1-4hit |
Satoshi DENNO Ke LIU Tatsuo FURUNO Masahiro MORIKURA
It is known that a heterodyne multimode receiver implemented with a single RF (Radio Frequency) receiver suffers from image-band interference due to imbalance, i.e. the phase error and the gain imbalance of the RF Hilbert transformer. The blind image band interference canceler with deterministic imbalance estimation that has been proposed mitigates the image-band interference. This performance of the image-band interference canceler is analyzed theoretically in this paper. As a result, it is revealed that estimation accuracy of the deterministic imbalance estimation is improved slightly as the imbalance becomes greater. In addition, it is also shown that the deterministic estimation achieves better performance as the power of image-band interference increases. The performance is confirmed by computer simulation.
Shrinkage widely linear recursive least squares (SWL-RLS) and its improved version called structured shrinkage widely linear recursive least squares (SSWL-RLS) algorithms are proposed in this paper. By using the relationship between the noise-free a posterior and a priori error signals, the optimal forgetting factor can be obtained at each snapshot. In the implementation of algorithms, due to the a priori error signal known, we still need the information about the noise-free a priori error which can be estimated with a known formula. Simulation results illustrate that the proposed algorithms have faster convergence and better tracking capability than augmented RLS (A-RLS), augmented least mean square (A-LMS) and SWL-LMS algorithms.
Siye WANG Yanjun ZHANG Bo ZHOU Wenbiao ZHOU Dake LIU
In this paper, we consider a two-way multi-relay scenario and analyze the bit error rate (BER) and outage performance of an amplify-and-forward (AF) relaying protocol. We first investigate the bit error probability by considering channel estimation error. With the derivation of effective signal-to-noise ratio (SNR) at the transceiver and its probability density function (PDF), we can obtain a closed form formulation of the total average error probability of two-way multi-relay system. Furthermore, we also derive exact expressions of the outage probability for two-way relay through the aid of a modified Bessel function. Finally, numerical experiments are performed to verify the analytical results and show that our theoretical derivations are exactly matched with simulations.
Satoshi DENNO Ke LIU Tatsuo FURUNO Masahiro MORIKURA
This paper proposes a novel scheme called as“frequency domain imbalance estimation” that estimates the imbalance of the Hilbert transformer in heterodyne multimode/band receivers with baseband automatic gain control (AGC). The proposed scheme uses correlation matrices in the frequency domain. This enables the receivers to keep high transmission performance in spite of the imbalance of the analog Hilbert transformer, by offsetting the imbalance. Moreover, the baseband AGC relaxes the requirement of the baseband A/D converter. The performance of imbalance estimation and imbalance cancellation is verified by computer simulation. As a result, it is shown that the proposed scheme not only estimates the imbalance of Hilbert transformer with extremely high precision, but also cancels the image-band interference such that it achieves the theoretical performance.