Author Search Result

[Author] Satoshi DENNO(35hit)

1-20hit(35hit)

  • Adaptive Resource Allocation Based on Factor Graphs in Non-Orthogonal Multiple Access Open Access

    Taichi YAMAGAMI  Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/04/15
      Vol:
    E105-B No:10
      Page(s):
    1258-1267

    In this paper, we propose a non-orthogonal multiple access with adaptive resource allocation. The proposed non-orthogonal multiple access assigns multiple frequency resources for each device to send packets. Even if the number of devices is more than that of the available frequency resources, the proposed non-orthogonal access allows all the devices to transmit their packets simultaneously for high capacity massive machine-type communications (mMTC). Furthermore, this paper proposes adaptive resource allocation algorithms based on factor graphs that adaptively allocate the frequency resources to the devices for improvement of the transmission performances. This paper proposes two allocation algorithms for the proposed non-orthogonal multiple access. This paper shows that the proposed non-orthogonal multiple access achieves superior transmission performance when the number of the devices is 50% greater than the amount of the resource, i.e., the overloading ratio of 1.5, even without the adaptive resource allocation. The adaptive resource allocation enables the proposed non-orthogonal access to attain a gain of about 5dB at the BER of 10-4.

  • Superposition Signal Input Decoding for Lattice Reduction-Aided MIMO Receivers Open Access

    Satoshi DENNO  Koki KASHIHARA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/01
      Vol:
    E106-B No:2
      Page(s):
    184-192

    This paper proposes a novel approach to low complexity soft input decoding for lattice reduction-aided MIMO receivers. The proposed approach feeds a soft input decoder with soft signals made from hard decision signals generated by using a lattice reduction-aided linear detector. The soft signal is a weighted-sum of some candidate vectors that are near by the hard decision signal coming out from the lattice reduction-aided linear detector. This paper proposes a technique to adjust the weight adapt to the channel for the higher transmission performance. Furthermore, we propose to introduce a coefficient that is used for the weights in order to enhance the transmission performance. The transmission performance is evaluated in a 4×4 MIMO channel. When a linear MMSE filter or a serial interference canceller is used as the linear detector, the proposed technique achieves about 1.0dB better transmission performance at the BER of 10-5 than the decoder fed with the hard decision signals. In addition, the low computational complexity of the proposed technique is quantitatively evaluated.

  • Theoretical Performance Analysis of an Image-Band Interference Canceller with Deterministic Imbalance Estimation

    Satoshi DENNO  Ke LIU  Tatsuo FURUNO  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:4
      Page(s):
    968-977

    It is known that a heterodyne multimode receiver implemented with a single RF (Radio Frequency) receiver suffers from image-band interference due to imbalance, i.e. the phase error and the gain imbalance of the RF Hilbert transformer. The blind image band interference canceler with deterministic imbalance estimation that has been proposed mitigates the image-band interference. This performance of the image-band interference canceler is analyzed theoretically in this paper. As a result, it is revealed that estimation accuracy of the deterministic imbalance estimation is improved slightly as the imbalance becomes greater. In addition, it is also shown that the deterministic estimation achieves better performance as the power of image-band interference increases. The performance is confirmed by computer simulation.

  • An Iterative MIMO Receiver Employing Virtual Channels with a Turbo Decoder for OFDM Wireless Systems

    Akihito TAYA  Satoshi DENNO  Koji YAMAMOTO  Masahiro MORIKURA  Daisuke UMEHARA  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:5
      Page(s):
    878-889

    This paper proposes a novel iterative multiple-input multiple-output (MIMO) receiver for orthogonal frequency division multiplexing (OFDM) systems, named as an “iterative MIMO receiver employing virtual channels with a Turbo decoder.” The proposed MIMO receiver comprises a MIMO detector with virtual channel detection and a Turbo decoder, between which signals are exchanged iteratively. This paper proposes a semi hard input soft output (SHISO) iterative decoding for the iterative MIMO receiver that achieves better performance than a soft input soft output (SISO) iterative decoding. Moreover, this paper proposes a new criterion for the MIMO detector to select the most likely virtual channel. The performance of the proposed receiver is verified in a 6×2 MIMO-OFDM system by computer simulation. The proposed receiver achieves better performance than the SISO MAP iterative receiver by 1.5dB at the bit error rate (BER) of 10-4, by optimizing the number of the Turbo iteration per the SHISO iteration. Moreover, the proposed detection criterion enables the proposed receiver to achieve a gain of 3.0dB at the BER of 10-5, compared with the SISO MAP iterative receiver with the Turbo decoder.

  • Precoded Physical Layer Network Coding with Coded Modulation in MIMO-OFDM Bi-Directional Wireless Relay Systems Open Access

    Satoshi DENNO  Kazuma YAMAMOTO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    99-108

    This paper proposes coded modulation for physical layer network coding in multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) bi-directional wireless relay systems where precoding is applied. The proposed coded modulation enables the relays to decode the received signals, which improves the transmission performance. Soft input decoding for the proposed coded modulation is proposed. Furthermore, we propose two precoder weight optimization techniques, called “per subcarrier weight optimization” and “total weight optimization”. This paper shows a precoder configuration based on the optimization with the lattice reduction or the sorted QR-decomposition. The performance of the proposed network coding is evaluated by computer simulation in a MIMO-OFDM two-hop wireless relay system with the 16 quadrature amplitude modulation (QAM) or the 256QAM. The proposed coded modulation attains a coding gain of about 2dB at the BER of 10-4. The total weight optimization achieves about 1dB better BER performance than the other at the BER of 10-4.

  • A Reduced-Complexity Heterodyne Multiband MIMO Receiver with Estimation of Analog Devices Imperfection in a Baseband Feedback Loop

    Tomoya OHTA  Satoshi DENNO  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:6
      Page(s):
    1540-1550

    This paper proposes a reduced-complexity multiband multiple-input multiple-output (MIMO) receiver that can be used in cognitive radios. The proposed receiver uses heterodyne reception implemented with a wide-passband band-pass filter in the radio frequency (RF) stage. When an RF Hilbert transformer is utilized in the receiver, image-band interference occurs because of the transformer's imperfections. Thus, the imperfection of the Hilbert transformer is corrected in the intermediate frequency (IF) stage to reduce the hardware complexity. First, the proposed receiver estimates the channel impulse response in the presence of the strong image-band interference signals. Next, the coefficients are calculated for the correction of the imperfection at the IF stage, and are fed back to the IF stage through a feedback loop. However, the imperfection caused by the digital-to-analog (D/A) converter and the baseband amplifier in the feedback loop corrupts the coefficients on the way back to the IF stage. Therefore, the proposed receiver corrects the imperfection of the analog devices in the feedback loop. The performance of the proposed receiver is verified by using computer simulations. The proposed receiver can maintain its performance even in the presence of strong image-band interference signals and imperfection of the analog devices in the feedback loop. In addition, this paper also reveals the condition for rapid convergence.

  • XOR Physical Layer Network Coding with Non-Linear Precoding for Quadrature Amplitude Modulations in Bi-Directional MIMO Relay Systems

    Satoshi DENNO  Yuto NAGAI  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/04/17
      Vol:
    E102-B No:10
      Page(s):
    2073-2081

    This paper proposes an XOR physical layer network coding (XOR-PLNC) with non-linear precoding for quadrature amplitude modulations (QAMs) in bi-directional MIMO relay systems. The proposed XOR-PLNC applies power loading in order to improve the transmission performance. The proposed XOR-PLNC introduces a modulus adapted to channel gains. Moreover, the modulus is further reduced in cooperation with modulo operation which the non-linear precoding employs for improvement of transmission power efficiency. The use of the reduced modulus improves the energy efficiency of the signal transmission, which improves the transmission performance in the proposed XOR-PLNC. The performance is evaluated by computer simulations in bi-directional MIMO relay channels with 16QAM to 1024QAM.

  • Maximum Doppler Frequency Detection Based on Likelihood Estimation With Theoretical Thresholds Open Access

    Satoshi DENNO  Kazuma HOTTA  Yafei HOU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2021/10/25
      Vol:
    E105-B No:5
      Page(s):
    657-664

    This paper proposes a novel maximum Doppler frequency detection technique for user moving velocity estimation. The maximum Doppler frequency is estimated in the proposed detection technique by making use of the fact that user moving velocity is not distributed continuously. The fluctuation of the channel state information during a packet is applied for the proposed detection, in which likelihood estimation is performed by comparing the fluctuation with the thresholds. The thresholds are theoretically derived on the assumption that the fluctuation is distributed with an exponential function. An approximated detection technique is proposed to simplify the theoretical threshold derivation. The performance of the proposed detection is evaluated by computer simulation. The proposed detection accomplishes better detection performance as the fluctuation values are summed over more packets. The proposed detection achieves about 90% correct detection performance in a fading channel with the Eb/N0 = 35dB, when the fluctuation values are summed over only three packets. Furthermore, the approximated detection also achieves the same detection performance.

  • Low Complexity Resource Allocation in Frequency Domain Non-Orthogonal Multiple Access Open Access

    Satoshi DENNO  Taichi YAMAGAMI  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/05/08
      Vol:
    E106-B No:10
      Page(s):
    1004-1014

    This paper proposes low complexity resource allocation in frequency domain non-orthogonal multiple access where many devices access with a base station. The number of the devices is assumed to be more than that of the resource for network capacity enhancement, which is demanded in massive machine type communications (mMTC). This paper proposes two types of resource allocation techniques, all of which are based on the MIN-MAX approach. One of them seeks for nicer resource allocation with only channel gains. The other technique applies the message passing algorithm (MPA) for better resource allocation. The proposed resource allocation techniques are evaluated by computer simulation in frequency domain non-orthogonal multiple access. The proposed technique with the MPA achieves the best bit error rate (BER) performance in the proposed techniques. However, the computational complexity of the proposed techniques with channel gains is much smaller than that of the proposed technique with the MPA, whereas the BER performance of the proposed techniques with channel gains is only about 0.1dB inferior to that with the MPA in the multiple access with the overloading ratio of 1.5 at the BER of 10-4. They attain the gain of about 10dB at the BER of 10-4 in the multiple access with the overloading ration of 2.0. Their complexity is 10-16 as small as the conventional technique.

  • Overloaded MIMO Bi-Directional Communication with Physical Layer Network Coding in Heterogeneous Multihop Networks Open Access

    Satoshi DENNO  Tomoya TANIKAWA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1228-1236

    This paper proposes overloaded multiple input multiple output (MIMO) bi-directional communication with physical layer network coding (PLNC) to enhance the transmission speed in heterogeneous wireless multihop networks where the number of antennas on the relay is less than that on the terminals. The proposed overloaded MIMO communication system applies precoding and relay filtering to reduce computational complexity in spite of the transmission speed. An eigenvector-based filter is proposed for the relay filter. Furthermore, we propose a technique to select the best filter among candidates eigenvector-based filters. The performance of the proposed overloaded MIMO bi-directional communication is evaluated by computer simulation in a heterogeneous wireless 2-hop network. The proposed filter selection technique attains a gain of about 1.5dB at the BER of 10-5 in a 2-hop network where 2 antennas and 4 antennas are placed on the relay and the terminal, respectively. This paper shows that 6 stream spatial multiplexing is made possible in the system with 2 antennas on the relay.

  • Low Complexity Overloaded MIMO Non-Linear Detector with Iterative LLR Estimation

    Satoshi DENNO  Shuhei MAKABE  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:3
      Page(s):
    339-348

    This paper proposes a non-linear overloaded MIMO detector that outperforms the conventional soft-input maximum likelihood detector (MLD) with less computational complexity. We propose iterative log-likelihood ratio (LLR) estimation and multi stage LLR estimation for the proposed detector to achieve such superior performance. While the iterative LLR estimation achieves better BER performance, the multi stage LLR estimation makes the detector less complex than the conventional soft-input maximum likelihood detector (MLD). The computer simulation reveals that the proposed detector achieves about 0.6dB better BER performance than the soft-input MLD with about half of the soft-input MLD's complexity in a 6×3 overloaded MIMO OFDM system.

  • A Novel Low Complexity Lattice Reduction-Aided Iterative Receiver for Overloaded MIMO Open Access

    Satoshi DENNO  Yuta KAWAGUCHI  Tsubasa INOUE  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/11/21
      Vol:
    E102-B No:5
      Page(s):
    1045-1054

    This paper proposes a novel low complexity lattice reduction-aided iterative receiver for overloaded MIMO. Novel noise cancellation is proposed that increases an equivalent channel gain with a scalar gain introduced in this paper, which results in the improvement of the signal to noise power ratio (SNR). We theoretically analyze the performance of the proposed receiver that the lattice reduction raises the SNR of the detector output signals as the scalar gain increases, when the Lenstra-Lenstra-Lova's (LLL) algorithm is applied to implement the lattice reduction. Because the SNR improvement causes the scalar gain to increase, the performance is improved by iterating the reception process. Computer simulations confirm the performance. The proposed receiver attains a gain of about 5dB at the BER of 10-4 in a 6×2 overloaded MIMO channel. Computational complexity of the proposed receiver is about 1/50 as much as that of the maximum likelihood detection (MLD).

  • A Software Antenna: Reconfigurable Adaptive Arrays Based on Eigenvalue Decomposition

    Yukihiro KAMIYA  Yoshio KARASAWA  Satoshi DENNO  Yoshihiko MIZUGUCHI  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    2012-2020

    Multimedia mobile communication systems are expected to be realized in the near future. In such systems, multipath fading can cause severe degradations of the quality of the communications due to its wide bandwidth, especially in urban areas. Adaptive array antennas can be attractive solution for overcoming the multipath fading. Suppression can be achieved with the adaptive array by cophasing and combining multipath signals in the space and time domain. On the other hand, the concept of software antenna has been proposed. The software antenna recognizes radiowave environments and appropriately reconfigures itself for the signal processing required by the recognized environment. Efficient implementations can be expected if these functions are realized by the software. In this paper, we propose two types of the adaptive array systems which is reconfigurable depending on the radiowave environment as a realization of the concept of the software antenna. They recognize the environment by using the eigenvalue decomposition of space domain correlation matrices and reconfigure their structures of the signal processing. The principle and performance are examined by theoretical means and through computer simulations.

  • Overloaded MIMO Spatial Multiplexing Independent of Antenna Setups Open Access

    Satoshi DENNO  Takumi SUGIMOTO  Koki MATOBA  Yafei HOU  

     
    POSITION PAPER-Wireless Communication Technologies

      Vol:
    E108-B No:1
      Page(s):
    1-13

    This paper proposes overloaded MIMO spatial multiplexing that can increase the number of spatially multiplexed signal streams despite of the number of antennas on a terminal and that on a receiver. We propose extension of the channel matrix for the spatial multiplexing to achieve the superb multiplexing performance. Precoding based on the extended channel matrix plays a crucial role in carrying out such spatial multiplexing. We consider three types of QR-decomposition techniques for the proposed spatial multiplexing to improve the transmission performance. The transmission performance of the proposed spatial multiplexing is evaluated by computer simulation. The simulation reveals that the proposed overloaded MIMO spatial multiplexing can implement 6 stream-spatial multiplexing in a 2×2 MIMO system, i.e., the overloading ratio of 3.0. The superior transmission performance is achieved by the proposed overloaded MIMO spatial multiplexing with one of the QR-decomposition techniques.

  • Software Radio-Based Distributed Multi-User MIMO Testbed: Towards Green Wireless Communications

    Hidekazu MURATA  Susumu YOSHIDA  Koji YAMAMOTO  Daisuke UMEHARA  Satoshi DENNO  Masahiro MORIKURA  

     
    INVITED PAPER

      Vol:
    E96-A No:1
      Page(s):
    247-254

    The present paper introduces a prototype design and experimental results for a multi-user MIMO linear precoding system. A base station and two mobile stations are implemented by taking full advantage of the software-defined radio. The base station consists of general purpose signal analyzers and signal generators controlled by a personal computer. Universal software radio peripherals are used as mobile stations. Linear spatial precoding and a simple two-way channel estimation technique are adopted in this experimental system. In-lab and field transmission experiments are carried out, and the bit error rate performance is evaluated. The impact of the channel estimation error under average channel gain discrepancy between two mobile stations is analyzed through computer simulations. Channel estimation error is shown to have a greater influence on the mobile station with the greater average channel gain.

  • 6. 144Mbit/s Burst Modem with an Adaptive Equalizer for TDMA Mobile Radio Communications

    Satoshi DENNO  Yushi SHIRATO  

     
    PAPER

      Vol:
    E81-B No:7
      Page(s):
    1453-1461

    This paper describes methods used in the design of a high speed burst modem applied for mobile communication systems. The modem has burst mode operations including burst mode AGC (automatic gain control), burst mode BTR (bit timing recovery), adaptive equalization, and diversity based on a selection algorithm to achieve a higher performance in multipath fading channels. Moreover, the performance of the burst modem, which is developed using analog signal processing devices, DSPs (digital signal processors), and FPGAs (field programmable gate arrays), is analyzed experimentally. Results show that the modem can suppress irreducible BER values below 1. 0e-6 and attains a 2 dB implicit diversity gain over multipath fading channels modeled by a two-ray impulse response system with independent Rayleigh fading.

  • A Least Bit Error Rate Adaptive Array for MultiLevel Modulations

    Satoshi DENNO  Daisuke UMEHARA  Masahiro MORIKURA  

     
    PAPER-Radio Systems

      Vol:
    E95-B No:1
      Page(s):
    69-76

    This paper proposes an adaptive algorithm for adaptive arrays that minimizes the bit error rate (BER) of the array output signals in radio communication systems with the use of multilevel modulation signals. In particular, amplitude phase shift keying (APSK) is used as one type of multilevel modulations in this paper. Simultaneous non-linear equations that are satisfied by the optimum weight vector of the proposed algorithm are derived and used for theoretical analyze of the performance of the adaptive array based on the proposed algorithm. As a result of the theoretical analysis, it can be shown that the proposed adaptive array improves the carrier to interference ratio of the array output signal without taking advantage of the nulls. Furthermore, it is confirmed that the result of the theoretical analysis agrees with that of computer simulation. When the number of the received antenna is less than that of the received signals, the adaptive array based on the proposed algorithm is verified to achieve much better performance then that based on the least mean square (LMS) algorithm.

  • Complexity Reduced Lattice-Reduction-Aided MIMO Receiver with Virtual Channel Detection

    Shogo YOSHIKAWA  Satoshi DENNO  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    263-270

    This paper proposes a lattice-reduction-aided MIMO-OFDM receiver with virtual channels; the receiver enables an increase in the downlink transmission speed for a user where the number of transmit antennas is considerably higher than that of the receive antennas. However, the receiver has a higher computational complexity than conventional lattice-reduction-aided MIMO receivers. Accordingly, we also propose novel techniques to reduce the computational complexity for the lattice-reduction-aided MIMO receivers with virtual channels. The proposed MIMO receiver achieves superior performance in 102 MIMO-OFDM systems. Furthermore, the proposed techniques are shown to reduce the computational complexity to approximately 40% of the original configuration in the 102 MIMO-OFDM systems.

  • Frequency Domain Imbalance Estimation in Heterodyne Multimode/Band Receivers with Baseband Automatic Gain Control

    Satoshi DENNO  Ke LIU  Tatsuo FURUNO  Masahiro MORIKURA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:1
      Page(s):
    271-280

    This paper proposes a novel scheme called as“frequency domain imbalance estimation” that estimates the imbalance of the Hilbert transformer in heterodyne multimode/band receivers with baseband automatic gain control (AGC). The proposed scheme uses correlation matrices in the frequency domain. This enables the receivers to keep high transmission performance in spite of the imbalance of the analog Hilbert transformer, by offsetting the imbalance. Moreover, the baseband AGC relaxes the requirement of the baseband A/D converter. The performance of imbalance estimation and imbalance cancellation is verified by computer simulation. As a result, it is shown that the proposed scheme not only estimates the imbalance of Hilbert transformer with extremely high precision, but also cancels the image-band interference such that it achieves the theoretical performance.

  • Algorithm Diversity in a Software Antenna

    Yoshio KARASAWA  Yukihiro KAMIYA  Takashi INOUE  Satoshi DENNO  

     
    PAPER

      Vol:
    E83-B No:6
      Page(s):
    1229-1236

    A software antenna, which will be a key device realizing flexible and highly reliable wireless communications systems, is inherently matched with software defined radios (SDR). In this paper, first, key technologies on the software antenna are introduced. The technologies contain i) how to recognize the radio environment, ii) how to determine the optimum adaptive signal processing algorithm, and iii) how to reconfigure the digital beamforming circuit. Then, an image of a software antenna with reconfigurable eigenvector-beamspace configuration is presented. Finally, by assuming various propagation conditions, performance of the software antenna in terms of algorithm diversity is demonstrated.

1-20hit(35hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.