1-2hit |
Takuma ITO Naoki HONMA Keisuke TERASAKI Kentaro NISHIMORI Yoshitaka TSUNEKAWA
Controlling interference from the secondary system (SS) to the receiver of the primary system (PS) is an important issue when the SS uses the same frequency band as the television broadcast system. The reason includes that the SS is unaware of the interference imposed on the primary receiver (PS-Rx), which does not have a transmitter. In this paper, we propose an interference control method between PS-Rx and SS, where a load modulation scheme is introduced to the PS-Rx. In this method, the signal from the PS transmitting station is scattered by switching its load impedance. The SS observes the scattered channel and calculates the interference suppression weights for transmitting, and controls interference by transmit beamforming. A simulation shows that the Signal-to-Interference Ratio (SIR) with interference control is improved by up to 41.5dB compared to that without interference control at short distances; the results confirm that the proposed method is effective in controlling interference between PS-Rx and SS. Furthermore, we evaluate the Signal-to-Noise Ratio (SNR) and channel capacity at SS.
This paper describes experiments on passive Multiple-Input Multiple-Output (MIMO) transmission with load modulation. PIN diodes are used as the variable impedance element at the tag side to realize multi-level modulation. The results indicate that the transmission rate of passive MIMO is up to 2 times higher than that of Single-Input Single-Output (SISO) with the same transmission power when the distance between the reader and the tag is 0.5m. Also, when the distance is 1m, MIMO offers up to 1.7 times higher transmission rate than SISO. These results indicate that passive MIMO offers high-speed data transmission even when the distance is doubled.