Author Search Result

[Author] Ken TAKEUCHI(18hit)

1-18hit
  • Variation of SCM/NAND Flash Hybrid SSD Performance, Reliability and Cost by Using Different SSD Configurations and Error Correction Strengths

    Hirofumi TAKISHITA  Shuhei TANAKAMARU  Sheyang NING  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E99-C No:4
      Page(s):
    444-451

    Storage-Class Memory (SCM) and NAND flash hybrid Solid-State Drive (SSD) has advantages of high performance and low power consumption compared with NAND flash only SSD. In this paper, first, three SSD configurations are investigated. Three different SCMs are used with 0.1 µs, 1 µs and 10 µs read/write latencies, respectively, and the required SCM/NAND flash capacity ratios are analyzed to maintain the same SSD performance. Next, by using the three SSD configurations, the variation of SSD reliability, performance and cost are analyzed by changing error correction strengths. The SSD reliability of acceptable SCM and NAND flash Bit Error Rates (BERs) is limited by achieving specified SSD performance with error correction, and/or limited by SCM and NAND flash parity size and SSD cost. Lastly, the SSD replacement cost is also analyzed by considering the limitation of NAND flash write/erase cycles. The purpose of this paper is to provide a design guideline for obtaining high performance, highly reliable and cost-effective SCM/NAND hybrid structure SSD with ECC.

  • Inductor and TSV Design of 20-V Boost Converter for Low Power 3D Solid State Drive with NAND Flash Memories

    Tadashi YASUFUKU  Koichi ISHIDA  Shinji MIYAMOTO  Hiroto NAKAI  Makoto TAKAMIYA  Takayasu SAKURAI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E93-C No:3
      Page(s):
    317-323

    Two essential technologies for a 3D Solid State Drive (3D-SSD) with a boost converter are presented in this paper. The first topic is the spiral inductor design which determines the performance of the boost converter, and the second is the effect of TSV's on the boost converter. These techniques are very important in achieving a 3D-SSD with a boost converter. In the design of the inductor, the on-board inductor from 250 nH to 320 nH is the best design feature that meets all requirements, including high output voltage above 20 V, fast rise time, low energy consumption, and area smaller than 25 mm2. The use of a boost converter with the proposed inductor leads to a reduction of the energy consumption during the write operation of the proposed 1.8-V 3D-SSD by 68% compared with the conventional 3.3-V 3D-SSD with the charge pump. The feasibility of 3D-SSD's with Through Silicon Vias (TSV's) connections is also discussed. In order to maintain the advantages of the boost converter over the charge pump, the reduction of the parasitic resistance of TSV's is very important.

  • NAND Phase Change Memory with Block Erase Architecture and Pass-Transistor Design Requirements for Write and Disturbance

    Koh JOHGUCHI  Kasuaki YOSHIOKA  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    351-359

    In this paper, we propose an optimum access method for a phase change memory (PCM) with NAND strings. A PCM with a block erase interface is proposed. The method, which has a SET block erase operation and fast RESET programming, is proposed since the SET operation causes a slow access time for conventional PCM;. From the results of measurement, the SET-ERASE operation is successfully completed while the RESET-ERASE operation is incomplete owing to serial connection. As a result, the block erase interface with the SET-ERASE and RESET program method realizes a 7.7 times faster write speed compared than a conventional RAM interface owing to the long SET time. We also give pass-transistor design guidelines for PCM with NAND strings. In addition, the write-capability and write-disturb problems are investigated. The ERASE operation for the proposed device structure can be realized with the same current as that for the SET operation of a single cell. For the pass transistor, about 4.4 times larger on-current is needed to carry out the RESET operation and to avoid the write-disturb problem than the minimum RESET current of a single cell. In this paper, the SET programming method is also verified for a conventional RAM interface. The experimental results show that the write-capability and write-disturb problems are negligible.

  • Improvement of Read Disturb, Program Disturb and Data Retention by Memory Cell VTH Optimization of Ferroelectric (Fe)-NAND Flash Memories for Highly Reliable and Low Power Enterprise Solid-State Drives (SSDs)

    Teruyoshi HATANAKA  Mitsue TAKAHASHI  Shigeki SAKAI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    539-547

    This paper presents an improvement of the memory cell reliability by the memory cell VTH optimization of the ferroelectric (Fe)-NAND flash memory. The effects of the memory cell VTH on the reliability of the Fe-NAND flash memory are experimentally analyzed for the first time. The reliability is evaluated by the measured VTH shift due to the read disturb, program disturb and data retention. Three types of Fe-NAND flash memory cells, a positive, zero and negative VTH memory cell, are defined on the basis of the memory cell VTH. The middle of VTH of programmed and erased states is 1 V, 0 V and -0.3 V in a positive, zero and negative VTH memory cell, respectively. The VTH shift of the positive, zero and negative VTH memory cells show similar characteristics in the program/erase and the VPASS and VPGM disturbs because the external electric field is so high that the internal depolarization field does not affect the VTH shift. On the other hand, in the data retention, the VTH shift of the three types of VTH memory cells show different characteristics. The reliability of the Fe-NAND flash memory is best optimized in the zero VTH memory cell. In the proposed zero VTH Fe-NAND flash memory cell scheme, the measured VTH shift due to the read disturb, program disturb and data retention decreases by 32%, 24% and 10%, respectively, compared with conventional positive VTH Fe-NAND flash memory cell scheme. Contrarily, in the negative VTH memory cell, the VTH shift during the data retention is 0.49 V and unacceptably large because of the depolarization field. The conventional positive VTH memory cell suffers from a sever read and program disturb. The measured results are drastically different from those of the conventional floating-gate NAND flash memory cell where the negative VTH memory cell is most suitable in terms of the reliability.

  • Reliability Analysis of Scaled NAND Flash Memory Based SSDs with Real Workload Characteristics by Using Real Usage-Based Precise Reliability Test

    Yusuke YAMAGA  Chihiro MATSUI  Yukiya SAKAKI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    243-252

    In order to reduce the memory cell errors in real-usage of NAND flash-based SSD, real usage-based precise reliability test for NAND flash of SSDs has been proposed. Reliability of the NAND flash memories of the SSDs is seriously degraded as the scaling of memory cells. However, conventional simple reliability tests of read-disturb and data-retention cannot give the same result as the real-life VTH shift and memory cell errors. To solve this problem, the proposed reliability test precisely reproduces the real memory cell failures by emulating the complicated read, write, and data-retention with SSD emulator. In this paper, the real-life VTH shift and memory cell errors between two generations of NAND flash memory with different characterized real workloads are provided. Using the proposed test method, 1.6-times BER difference is observed when write-cold and read-hot workload (hm_1) and write-hot and read-hot workload (prxy_1) are compared in 1Ynm MLC NAND flash. In addition, by NAND flash memory scaling from 1Xnm to 1Ynm generations, the discrepancy of error numbers between the conventional reliability test result and actual reliability measured by proposed reliability test is increased by 6.3-times. Finally, guidelines for read reference voltage shifts and strength of ECCs are given to achieve high memory cell reliability for various workloads.

  • A Design Strategy of Error-Prediction Low-Density Parity-Check (EP-LDPC) Error-Correcting Code (ECC) and Error-Recovery Schemes for Scaled NAND Flash Memories

    Shuhei TANAKAMARU  Masafumi DOI  Ken TAKEUCHI  

     
    PAPER-Integrated Electronics

      Vol:
    E98-C No:1
      Page(s):
    53-61

    A design strategy (the required ECC strength and the judgment method of the dominant error mode) of error-prediction low-density parity-check (EP-LDPC) error-correcting code (ECC) and error-recovery schemes for scaled NAND flash memories is discussed in this paper. The reliability characteristics of NAND flash memories are investigated with 1X, 2X and 3Xnm NAND flash memories. Moreover, the system-level reliability of SSDs is analyzed from the acceptable data-retention time of the SSD. The reliability of the NAND flash memory is continuously degrading as the design rule shrinks due to various problems. As a result, future SSDs will not be able to maintain system-level reliability unless advanced ECCs with signal processing are adopted. Therefore, EP-LDPC and error-recovery (ER) schemes are previously proposed to improve the reliability. The reliability characteristics such as the bit-error rate (BER) versus the data-retention time and the effect of the cell-to-cell interference on the BER are measured. These reliability characteristics obtained in this paper are stored in an SSD as a reliability table, which plays a principal role in EP-LDPC scheme. The effectiveness of the EP-LDPC scheme with the scaling of the NAND flash memory is also discussed by analyzing the cell-to-cell interference. An interference factor $alpha$ is proposed to discuss the impact of the cell-to-cell coupling. As a result, the EP-LDPC scheme is assumed to be effective down to 1Xnm NAND flash memory. On the other hand, the ER scheme applies different voltage pulses to memory cells, according to the dominant error mode: program-disturb or data-retention error dominant mode. This paper examines when the error mode changes, corresponding to which pulse should be applied. Additionally, the estimation methods of the dominant error mode by ER scheme are also discussed. Finally, as a result of the system-level reliability analysis, it is concluded that the use of the EP-LDPC scheme can maintain the reliability of the NAND flash memory in 1Xnm technology node.

  • System Performance Comparison of 3D Charge-Trap TLC NAND Flash and 2D Floating-Gate MLC NAND Flash Based SSDs

    Mamoru FUKUCHI  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER-Integrated Electronics

      Vol:
    E103-C No:4
      Page(s):
    161-170

    This paper analyzes the system-level performance of Storage Class Memory (SCM)/NAND flash hybrid solid-state drives (SSDs) and SCM/NAND flash/NAND flash tri-hybrid SSDs in difference types of NAND flash memory. There are several types of NAND flash memory, i.e. 2-dimensional (2D) or 3-dimensional (3D), charge-trap type (CT) and floating-gate type (FG) and multi-level cell (MLC) or triple-level cell (TLC). In this paper, the following four types of NAND flash memory are analyzed: 1) 3D CT TLC, 2) 3D FG TLC, 3) 2D FG TLC, and 4) 2D FG MLC NAND flash. Regardless of read- and write-intensive workloads, SCM/NAND flash hybrid SSD with low cost 3D CT TLC NAND flash achieves the best performance that is 20% higher than that with higher cost 2D FG MLC NAND flash. The performance improvement of 3D CT TLC NAND flash can be obtained by the short write latency. On the other hand, in case of tri-hybrid SSD, SCM/3D CT TLC/3D CT TLC NAND flash tri-hybrid SSD improves the performance 102% compared to SCM/2D FG MLC/3D CT TLC NAND flash tri-hybrid SSD. In addition, SCM/2D FG MLC/2D FG MLC NAND flash tri-hybrid SSD shows 49% lower performance than SCM/2D FG MLC/3D CT TLC NAND flash tri-hybrid SSD. Tri-hybrid SSD flash with 3D CT TLC NAND flash is the best performance in tri-hybrid SSD thanks to larger block size and word-line (WL) write. Therefore, in 3D CT TLC NAND flash based SSDs, higher cost MLC NAND flash is not necessary for hybrid SSD and tri-hybrid SSD for data center applications.

  • Heterogeneous Integration of Precise and Approximate Storage for Error-Tolerant Workloads

    Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2022/09/05
      Vol:
    E106-A No:3
      Page(s):
    491-503

    This study proposes a heterogeneous integration of precise and approximate storage in data center storage. The storage control engine allocates precise and error-tolerant applications to precise and approximate storage, respectively. The appropriate use of both precise and approximate storage is examined by applying a non-volatile memory capacity algorithm. To respond to the changes in application over time, the non-volatile memory capacity algorithm changes capacity of storage class memories (SCMs), namely the memory-type SCM (M-SCM) and storage-type SCM (S-SCM), in non-volatile memory resource. A three-dimensional triple-level cell (TLC) NAND flash is used as a large capacity memory. The results indicate that precise storage exhibits a high performance when the maximum storage cost is high. By contrast, with a low maximum storage cost, approximate storage exhibits high performance using a low bit cost approximate multiple-level cell (MLC) S-SCM.

  • Write Variation & Reliability Error Compensation by Layer-Wise Tunable Retraining of Edge FeFET LM-GA CiM

    Shinsei YOSHIKIYO  Naoko MISAWA  Kasidit TOPRASERTPONG  Shinichi TAKAGI  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2022/12/19
      Vol:
    E106-C No:7
      Page(s):
    352-364

    This paper proposes a layer-wise tunable retraining method for edge FeFET Computation-in-Memory (CiM) to compensate the accuracy degradation of neural network (NN) by FeFET device errors. The proposed retraining can tune the number of layers to be retrained to reduce inference accuracy degradation by errors that occur after retraining. Weights of the original NN model, accurately trained in cloud data center, are written into edge FeFET CiM. The written weights are changed by FeFET device errors in the field. By partially retraining the written NN model, the proposed method combines the error-affected layers of NN model with the retrained layers. The inference accuracy is thus recovered. After retraining, the retrained layers are re-written to CiM and affected by device errors again. In the evaluation, at first, the recovery capability of NN model by partial retraining is analyzed. Then the inference accuracy after re-writing is evaluated. Recovery capability is evaluated with non-volatile memory (NVM) typical errors: normal distribution, uniform shift, and bit-inversion. For all types of errors, more than 50% of the degraded percentage of inference accuracy is recovered by retraining only the final fully-connected (FC) layer of Resnet-32. To simulate FeFET Local-Multiply and Global-accumulate (LM-GA) CiM, recovery capability is also evaluated with FeFET errors modeled based on FeFET measurements. Retraining only FC layer achieves recovery rate of up to 53%, 66%, and 72% for FeFET write variation, read-disturb, and data-retention, respectively. In addition, just adding two more retraining layers improves recovery rate by 20-30%. In order to tune the number of retraining layers, inference accuracy after re-writing is evaluated by simulating the errors that occur after retraining. When NVM typical errors are injected, it is optimal to retrain FC layer and 3-6 convolution layers of Resnet-32. The optimal number of layers can be increased or decreased depending on the balance between the size of errors before retraining and errors after retraining.

  • A Temperature Tracking Read Reference Current and Write Voltage Generator for Multi-Level Phase Change Memories

    Koh JOHGUCHI  Toru EGAMI  Kousuke MIYAJI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    342-350

    This paper gives a write voltage and read reference current generator considering temperature characteristics for multi-level Ge2Sb2Te5-based phase change memories. Since the optimum SET and RESET voltages linearly changes by the temperature, the voltage supply circuit must track this characteristic. In addition, the measurement results show that the read current depends on both read temperature and the write temperature and has exponential dependence on the read temperature. Thus, the binning technique is applied for each read and write temperature regions. The proposed variable TC generator can achieve below ±0.5 LSB precision from the measured differential non-linearity and integral non-linearity. As a result, the temperature characteristics of both the linear write voltage and the exponential read current can be tracked with the proposed variation tolerant linear temperature coefficient current generator.

  • Comprehensive Analysis of Read Fluctuations in ReRAM CiM by Using Fluctuation Pattern Classifier Open Access

    Ayumu YAMADA  Zhiyuan HUANG  Naoko MISAWA  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    416-425

    In this work, fluctuation patterns of ReRAM current are classified automatically by proposed fluctuation pattern classifier (FPC). FPC is trained with artificially created dataset to overcome the difficulties of measured current signals, including the annotation cost and imbalanced data amount. Using FPC, fluctuation occurrence under different write conditions is analyzed for both HRS and LRS current. Based on the measurement and classification results, physical models of fluctuations are established.

  • REM-CiM: Attentional RGB-Event Fusion Multi-Modal Analog CiM for Area/Energy-Efficient Edge Object Detection during Both Day and Night Open Access

    Yuya ICHIKAWA  Ayumu YAMADA  Naoko MISAWA  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    426-435

    Integrating RGB and event sensors improves object detection accuracy, especially during the night, due to the high-dynamic range of event camera. However, introducing an event sensor leads to an increase in computational resources, which makes the implementation of RGB-event fusion multi-modal AI to CiM difficult. To tackle this issue, this paper proposes RGB-Event fusion Multi-modal analog Computation-in-Memory (CiM), called REM-CiM, for multi-modal edge object detection AI. In REM-CiM, two proposals about multi-modal AI algorithms and circuit implementation are co-designed. First, Memory capacity-Efficient Attentional Feature Pyramid Network (MEA-FPN), the model architecture for RGB-event fusion analog CiM, is proposed for parameter-efficient RGB-event fusion. Convolution-less bi-directional calibration (C-BDC) in MEA-FPN extracts important features of each modality with attention modules, while reducing the number of weight parameters by removing large convolutional operations from conventional BDC. Proposed MEA-FPN w/ C-BDC achieves a 76% reduction of parameters while maintaining mean Average Precision (mAP) degradation to < 2.3% during both day and night, compared with Attentional FPN fusion (A-FPN), a conventional BDC-adopted FPN fusion. Second, the low-bit quantization with clipping (LQC) is proposed to reduce area/energy. Proposed REM-CiM with MEA-FPN and LQC achieves almost the same memory cells, 21% less ADC area, 24% less ADC energy and 0.17% higher mAP than conventional FPN fusion CiM without LQC.

  • 3D Parallel ReRAM Computation-in-Memory for Hyperdimensional Computing Open Access

    Fuyuki KIHARA  Chihiro MATSUI  Ken TAKEUCHI  

     
    BRIEF PAPER

      Pubricized:
    2024/04/16
      Vol:
    E107-C No:10
      Page(s):
    436-439

    In this work, we propose a 1T1R ReRAM CiM architecture for Hyperdimensional Computing (HDC). The number of Source Lines and Bit Lines is reduced by introducing memory cells that are connected in series, which is especially advantageous when using a 3D implementation. The results of CiM operations contain errors, but HDC is robust against them, so that even if the XNOR operation has an error of 25%, the inference accuracy remains above 90%.

  • A Double-Leve1-Vth Select Gate Array Architecture for Multilevel NAND Flash Memories

    Ken TAKEUCHI  Tomoharu TANAKA  Hiroshi NAKAMURA  

     
    PAPER-Memory

      Vol:
    E79-C No:7
      Page(s):
    1013-1020

    In multilevel flash memorles, the threshold voltages of the memory cells should be controlled precisely. This paper describes how in a conventional NAND flash memory, the threshold voltages of the memory cells fluctuate due to array noise during the bit-by-bit program verify operation, and as a result, the threshold voltage distribution becomes wider. This paper describes a new array architecture, "A double-level-Vth select gate array architecture" to eliminate the array noise, together with a reduction of the cell area. The array noise is mainly caused by interbitline capacitive coupling noise and by the high resistance of the diffused source-line. The threshold voltage fluctuation can be as much as 0.7 V in a conventional array. In the proposed array, bitlines are alternately selected, and the unselected bitlines are used as low resistance source-lines. Moreover, the unselected bitlines form a shield between the neighboring selected bitlines. As a result, the array noise is strongly suppressed. The threshold voltage fluctuation is estimated to be as small as 0.03 V in the proposed array and a reliable operation of a multilevel NAND flash memory can be realized.

  • Workload-Based Co-Design of Non-Volatile Cache Algorithm and Storage Class Memory Specifications for Storage Class Memory/NAND Flash Hybrid SSDs

    Tomoaki YAMADA  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E100-C No:4
      Page(s):
    373-381

    In order to realize solid-state drives (SSDs) with high performance, low energy consumption and high reliability, storage class memory (SCM)/multi-level cell (MLC) NAND flash hybrid SSD has been proposed. Algorithm of the hybrid SSD should be designed according to SCM specifications and workload characteristics. In this paper, SCMs are used as non-volatile cache. Cache operation guidelines and optimal SCM specifications for the hybrid SSD are provided for various workload characteristics. Three kinds of non-volatile cache operation for the hybrid SSD are discussed: i) write cache, ii) read-write cache without space control (RW cache) and iii) read-write cache with space control (RW cache w/ SC). SSD workloads are categorized into eight according to read/write ratio, access frequency and access data size. From evaluation result, the write cache algorithm is suitable for write-intensive workloads and read-cold-sequential workloads, while the RW cache algorithm is suitable for read-cold-random workloads to achieve the highest performance of the hybrid SSD. In contrast, as for read-hot-random workloads, write cache is appropriate when the SCM capacity is less than 3% of the NAND flash capacity. On the other hand, RW cache should be used in case that SCM capacity is more than 5% of NAND flash capacity. The effect of Memory-type SCM (M-SCM) and Storage-type SCM (S-SCM) on the hybrid SSD performance is also analyzed. The M-SCM latency is below 1 us (high speed) but the capacity is only 2% of the NAND flash capacity (small capacity). On the other hand, the S-SCM capacity is assumed to be 5% of the NAND flash capacity (large capacity) but S-SCM speed is larger than 1 us (low speed). If the additional SCM cost is limited to 20% of MLC NAND flash cost, up to 7-times and 8-times performance improvement are achieved in write-hot-random workload and read-hot-random workloads, respectively. Moreover, if the additional SCM cost is the same as MLC NAND flash cost, M-SCM/MLC NAND flash hybrid SSD achieves 24-times performance improvement.

  • Analysis on Hybrid SSD Configuration with Emerging Non-Volatile Memories Including Quadruple-Level Cell (QLC) NAND Flash Memory and Various Types of Storage Class Memories (SCMs)

    Yoshiki TAKAI  Mamoru FUKUCHI  Chihiro MATSUI  Reika KINOSHITA  Ken TAKEUCHI  

     
    PAPER-Integrated Electronics

      Vol:
    E103-C No:4
      Page(s):
    171-180

    This paper analyzes the optimal SSD configuration including emerging non-volatile memories such as quadruple-level cell (QLC) NAND flash memory [1] and storage class memories (SCMs). First, SSD performance and SSD endurance lifetime of hybrid SSD are evaluated in four configurations: 1) single-level cell (SLC)/QLC NAND flash, 2) SCM/QLC NAND flash, 3) SCM/triple-level cell (TLC)/QLC NAND flash and 4) SCM/TLC NAND flash. Furthermore, these four configurations are compared in limited cost. In case of cold workloads or high total SSD cost assumption, SCM/TLC NAND flash hybrid configuration is recommended in both SSD performance and endurance lifetime. For hot workloads with low total SSD cost assumption, however, SLC/QLC NAND flash hybrid configuration is recommended with emphasis on SSD endurance lifetime. Under the same conditions as above, SCM/TLC/QLC NAND flash tri-hybrid is the best configuration in SSD performance considering cost. In particular, for prxy_0 (write-hot workload), SCM/TLC/QLC NAND flash tri-hybrid achieves 67% higher IOPS/cost than SCM/TLC NAND flash hybrid. Moreover, the configurations with the highest IOPS/cost in each workload and cost limit are picked up and analyzed with various types of SCMs. For all cases except for the case of prxy_1 with high total SSD cost assumption, middle-end SCM (write latency: 1us, read latency: 1us) is recommended in performance considering cost. However, for prxy_1 (read-hot workload) with high total SSD cost assumption, high-end SCM (write latency: 100ns, read latency: 100ns) achieves the best performance.

  • Initialize and Weak-Program Erasing Scheme for High-Performance and High-Reliability Ferroelectric NAND Flash Solid-State Drive

    Kousuke MIYAJI  Ryoji YAJIMA  Teruyoshi HATANAKA  Mitsue TAKAHASHI  Shigeki SAKAI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    609-616

    Initialize and weak-program erasing scheme is proposed to achieve high-performance and high-reliability Ferroelectric (Fe-) NAND flash solid-state drive (SSD). Bit-by-bit erase VTH control is achieved by the proposed erasing scheme and history effects in Fe-NAND is also suppressed. History effects change the future erase VTH shift characteristics by the past program voltage. The proposed erasing scheme decreases VTH shift variation due to history effects from ±40% to ±2% and the erase VTH distribution width is reduced from over 0.4 V to 0.045 V. As a result, the read and VPASS disturbance decrease by 42% and 37%, respectively. The proposed erasing scheme is immune to VTH variations and voltage stress. The proposed erasing scheme also suppresses the power and bandwidth degradation of SSD.

  • Analysis of Operation Margin and Read Speed in 6T- and 8T-SRAM with Local Electron Injected Asymmetric Pass Gate Transistor

    Kousuke MIYAJI  Kentaro HONDA  Shuhei TANAKAMARU  Shinji MIYANO  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    564-571

    Three types of electron injection scheme: both side injection scheme and self-repair one side injection scheme Type A (injection for once) and Type B (injection for twice) are proposed and analyzed comprehensively for 65 nm technology node 6T- and 8T-SRAM cells to find the optimum injection scheme and cell architecture. It is found that the read speed degrades by as much as 6.3 times in the 6T-SRAM with the local injected electrons. However, the read speed of the 8T-SRAM cell does not degrade because the read port is separated from the write pass gate transistors. Furthermore, the self-repair one side injection scheme is most suitable to solve the conflict of the half select disturb and write characteristics. The worst cell characteristics of Type A and Type B self-repair one side injection schemes were found to be the same. In the self-repair one side injection 8T-SRAM, the disturb margin increases by 141% without write margin or read speed degradation. The proposed schemes have no process or area penalty compared with the standard CMOS-process.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.