Author Search Result

[Author] Tadashi YASUFUKU(3hit)

1-3hit
  • Difficulty of Power Supply Voltage Scaling in Large Scale Subthreshold Logic Circuits

    Tadashi YASUFUKU  Taro NIIYAMA  Zhe PIAO  Koichi ISHIDA  Masami MURAKATA  Makoto TAKAMIYA  Takayasu SAKURAI  

     
    PAPER

      Vol:
    E93-C No:3
      Page(s):
    332-339

    In order to explore the feasibility of large-scale subthreshold logic circuits and to clarify the lower limit of supply voltage (VDD) for logic circuits, the dependence of the minimum operating voltage (VDD min ) of CMOS logic gates on the number of stages, gate types and gate width is systematically measured with 90 nm CMOS ring oscillators (RO's). The measured average VDD min of inverter RO's increased from 90 mV to 343 mV when the number of RO stages increased from 11 to 1 Mega, which indicates the difficulty of VDD scaling in large-scale subthreshold logic circuits. The dependence of VDD min on the number of stages is calculated using the subthreshold current model with random threshold voltage (VTH) variations and compared with the measured results, and the tendency of the measurement is confirmed. The effect of adaptive body bias control to compensate purely random VTH variation is also investigated. Such compensation would require impractical inverter-by-inverter adaptive body bias control.

  • Inductor and TSV Design of 20-V Boost Converter for Low Power 3D Solid State Drive with NAND Flash Memories

    Tadashi YASUFUKU  Koichi ISHIDA  Shinji MIYAMOTO  Hiroto NAKAI  Makoto TAKAMIYA  Takayasu SAKURAI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E93-C No:3
      Page(s):
    317-323

    Two essential technologies for a 3D Solid State Drive (3D-SSD) with a boost converter are presented in this paper. The first topic is the spiral inductor design which determines the performance of the boost converter, and the second is the effect of TSV's on the boost converter. These techniques are very important in achieving a 3D-SSD with a boost converter. In the design of the inductor, the on-board inductor from 250 nH to 320 nH is the best design feature that meets all requirements, including high output voltage above 20 V, fast rise time, low energy consumption, and area smaller than 25 mm2. The use of a boost converter with the proposed inductor leads to a reduction of the energy consumption during the write operation of the proposed 1.8-V 3D-SSD by 68% compared with the conventional 3.3-V 3D-SSD with the charge pump. The feasibility of 3D-SSD's with Through Silicon Vias (TSV's) connections is also discussed. In order to maintain the advantages of the boost converter over the charge pump, the reduction of the parasitic resistance of TSV's is very important.

  • Power Supply Voltage Dependence of Within-Die Delay Variation of Regular Manual Layout and Irregular Place-and-Route Layout

    Tadashi YASUFUKU  Yasumi NAKAMURA  Zhe PIAO  Makoto TAKAMIYA  Takayasu SAKURAI  

     
    BRIEF PAPER

      Vol:
    E94-C No:6
      Page(s):
    1072-1075

    Dependence of within-die delay variations on power supply voltage (VDD) is measured down to 0.4 V. The VDD dependence of the within-die delay variation of manual layout and irregular auto place and route (P&R) layout are compared for the first time. The measured relative delay (=sigma/average) variation difference between the manual layout and the P&R layout decreases from 1.56% to 0.07% with reducing VDD from 1.2 V to 0.4 V, because the random delay variations due to the random transistor variations dominate total delay variations instead of the delay variations due to interconnect length variations at low VDD.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.