1-7hit |
Masayasu YAMAGUCHI Ken-ichi YUKIMATSU Atsushi HIRAMATSU Tohru MATSUNAGA
This paper reviews the hyper-media photonic information network (HM-PIN) concept as a candidate of innovative future networks based on photonic technologies. The HM-PIN having a universal network interface integrates a variety of information services: telecommunications, newspapers, magazines, TV broadcasts and the growing collection of information servers. This network fundamentally offers three items: (1) bi-directional real-time channels with 10-Mbit/s-class or higher bit rate, (2) multipoint connections including multicasting/broadcasting, (3) high accessibility to information. These items are derived from the constraints of the conventional telephone networks and the Internet. By applying photonic technologies, the HM-PIN can be implemented as follows: The local network (the service platform) of the HM-PIN can be achieved by using a wavelength-division-multiplexing (WDM) broadcast-and-select (B&S) architecture that offers broadband multipoint connections (one-to-many, many-to-many) based on an inherent full-mesh topology. The WDM B&S local network will be able to support 10,000 to 100,000 channels (each with 10-Mbit/s or more bandwidth) by using optical and electrical multiplexing techniques. The backbone network can be constructed by combining photonic asynchronous transfer mode (ATM) switching systems and WDM transmission systems (including cross-connects). Two deployment scenarios of the HM-PIN (cost-oriented and service-oriented deployment scenarios) are also described for smoothly introducing the HM-PIN even before the cost issue is solved. The HM-PIN based on photonic technologies will be a future network service platform that greatly enhances communication services.
Masanori OGAWARA Atsushi HIRAMATSU Jun NISHIKIDO Masayuki YANAGIYA Masato TSUKADA Ken-ichi YUKIMATSU
This paper describes the implementation and demonstration of local networks for the hyper-media photonic information network (HM-PIN), a candidate for the information service platform offering broadcast and telecommunication services. In addition, the feasibility of the HM-PIN is also demonstrated using prototype local network systems. This local network adopts architecture based on wavelength-division-multiplexing (WDM) and broadcast-and-select (B&S) switching, and supports all HM-PIN services except inter-local-network communication. The major issues of this proposed network are the technologies that support many broadcast channels and reduce channel selection cost. This paper also considers the combination of WDM technology and three alternatives: electrical TDM, subcarrier multiplexing (SCM or electrical FDM), and optical TDM (O-TDM). Three 128 ch (8 wavelengths 16 channels) WDM B&S prototype systems are built to demonstrate the feasibility of the proposed HM-PIN. In WDM/SCM, 30 and 20 Mb/s channels are realized as 16-QAM and 64-QAM, and 155 Mb/s channels are realized by WDM/TDM. Moreover, these three prototypes were connected to form a small HM-PIN and applications such as video distribution and IP datagram cut-through are demonstrated. Furthermore, the delay and throughput of the HM-PIN are evaluated by connecting a local network to a 200-km WDM-ring backbone network. Our discussions and demonstrations confirm the impact and feasibility of the proposed hyper-media photonic information network.
Masayasu YAMAGUCHI Ken-ichi YUKIMATSU
This paper briefly reviews recent studies on free-space photonic switches, and discusses classifications, applications and technical issues to be solved. The free-space photonic switch is a switch that uses light beam interconnections based on free-space optics instead of guided-wave optics. A feature of the free-space switch is its high-density three-dimensional structure that enables compact large-scale switches to be created. In this paper, the free-space switches are classified by their various attributes such as logical network configuration, path-establishment method, number of physical stages, signal-waveform transmission form, interconnection optics and so on. The logical network configuration (topological geometry or topology) is strongly related to the advantages of the free-space switches over the guided-wave switches. The path-establishment method (path-shifting/branching-and-gating) and the number of physical stages (single-stage/multistage) are related to physical switching characteristics. Signal-waveform transmission form (analog/digital) is related to switch application. Interconnection optics (imaging system/micro-beam system) is related to the density and volume of the switching fabric. Examples of the free-space switches (single-stage, analog multistage, digital multistage and photonic ATM switches) are described. Possible applications for analog switches are subscriber-line concentrators, inter-module connectors, and switching networks for parallel or distributed computer systems. Those for digital switches include multistage space-division switches in time-division circuit-switching or packet switching systems (including asynchronous transfer mode [ATM] switching system) for both communications switching systems and parallel/distributed computer systems. Technical issues of the free-space switches (system, device, assembly technique) must be solved before creating practical systems. In particular, the assembly technique is a key issue of the free-space switches.
Ken-ichi YUKIMATSU Yoshihiro SHIMAZU
This paper describes the use of optical interconnections in switching systems and discusses our recent achievements in this area. Switching system interconnections are classified based on their application layers. The evolution of optical interconnections in switching systems in discussed in terms of such system requirements as cost, size, and throughput. Recent achievements are discussed: an optical inter-module connector, a free-space digital switch, and a large-capacity optically intra-connected ATM switch.
Masayasu YAMAGUCHI Ken-ichi YUKIMATSU Atsushi HIRAMATSU Tohru MATSUNAGA
This paper reviews the hyper-media photonic information network (HM-PIN) concept as a candidate of innovative future networks based on photonic technologies. The HM-PIN having a universal network interface integrates a variety of information services: telecommunications, newspapers, magazines, TV broadcasts and the growing collection of information servers. This network fundamentally offers three items: (1) bi-directional real-time channels with 10-Mbit/s-class or higher bit rate, (2) multipoint connections including multicasting/broadcasting, (3) high accessibility to information. These items are derived from the constraints of the conventional telephone networks and the Internet. By applying photonic technologies, the HM-PIN can be implemented as follows: The local network (the service platform) of the HM-PIN can be achieved by using a wavelength-division-multiplexing (WDM) broadcast-and-select (B&S) architecture that offers broadband multipoint connections (one-to-many, many-to-many) based on an inherent full-mesh topology. The WDM B&S local network will be able to support 10,000 to 100,000 channels (each with 10-Mbit/s or more bandwidth) by using optical and electrical multiplexing techniques. The backbone network can be constructed by combining photonic asynchronous transfer mode (ATM) switching systems and WDM transmission systems (including cross-connects). Two deployment scenarios of the HM-PIN (cost-oriented and service-oriented deployment scenarios) are also described for smoothly introducing the HM-PIN even before the cost issue is solved. The HM-PIN based on photonic technologies will be a future network service platform that greatly enhances communication services.
Masanori OGAWARA Atsushi HIRAMATSU Jun NISHIKIDO Masayuki YANAGIYA Masato TSUKADA Ken-ichi YUKIMATSU
This paper describes the implementation and demonstration of local networks for the hyper-media photonic information network (HM-PIN), a candidate for the information service platform offering broadcast and telecommunication services. In addition, the feasibility of the HM-PIN is also demonstrated using prototype local network systems. This local network adopts architecture based on wavelength-division-multiplexing (WDM) and broadcast-and-select (B&S) switching, and supports all HM-PIN services except inter-local-network communication. The major issues of this proposed network are the technologies that support many broadcast channels and reduce channel selection cost. This paper also considers the combination of WDM technology and three alternatives: electrical TDM, subcarrier multiplexing (SCM or electrical FDM), and optical TDM (O-TDM). Three 128 ch (8 wavelengths 16 channels) WDM B&S prototype systems are built to demonstrate the feasibility of the proposed HM-PIN. In WDM/SCM, 30 and 20 Mb/s channels are realized as 16-QAM and 64-QAM, and 155 Mb/s channels are realized by WDM/TDM. Moreover, these three prototypes were connected to form a small HM-PIN and applications such as video distribution and IP datagram cut-through are demonstrated. Furthermore, the delay and throughput of the HM-PIN are evaluated by connecting a local network to a 200-km WDM-ring backbone network. Our discussions and demonstrations confirm the impact and feasibility of the proposed hyper-media photonic information network.
Masayasu YAMAGUCHI Tohru MATSUNAGA Seiiti SHIRAI Ken-ichi YUKIMATSU
This paper describes a new free-space optical switch structure based on cascaded beam shifters (each consists of a liquid-crystal polarization controller array and a birefringent plate). This structure comprises 2-input, 2-output switching elements that are locally connected by links. It is applicable to a variety of switching networks, such as a Clos network. The switching network based on this structure is an analog switch that is transparent to signal format, bit rate, and modulation type, so it can handle various types of optical signals. Theoretical feasibility studies indicate that compact large-scale switches (i.e., 100-1000 ports) with relay lens systems can be implemented using beam shifters with a 0.4-dB insertion loss and a 30-dB extinction ratio. Experimental feasibility studies indicate that a 1024-cell beam shifter module with a 0.5-dB insertion loss and a 23-dB extinction ratio is possible at present. An alignment-free assembly technique using precise alignment guides is also confirmed. An experimental 8-stage, 1024-input 256-output concentrator shows low insertion loss characteristics (6.8dB on average) owing to the low-loss beam shifters and the alignment-free assembly technique. Practical switching networks mainly require the improvement of the extinction ratio of the beam shifter module and the development of a fiber pig-tailing technique. This switch structure is applicable to transparent switching networks such as subscriber line concentrators and inter-module connectors.