This paper describes a new free-space optical switch structure based on cascaded beam shifters (each consists of a liquid-crystal polarization controller array and a birefringent plate). This structure comprises 2-input, 2-output switching elements that are locally connected by links. It is applicable to a variety of switching networks, such as a Clos network. The switching network based on this structure is an analog switch that is transparent to signal format, bit rate, and modulation type, so it can handle various types of optical signals. Theoretical feasibility studies indicate that compact large-scale switches (i.e., 100-1000 ports) with relay lens systems can be implemented using beam shifters with a 0.4-dB insertion loss and a 30-dB extinction ratio. Experimental feasibility studies indicate that a 1024-cell beam shifter module with a 0.5-dB insertion loss and a 23-dB extinction ratio is possible at present. An alignment-free assembly technique using precise alignment guides is also confirmed. An experimental 8-stage, 1024-input 256-output concentrator shows low insertion loss characteristics (6.8dB on average) owing to the low-loss beam shifters and the alignment-free assembly technique. Practical switching networks mainly require the improvement of the extinction ratio of the beam shifter module and the development of a fiber pig-tailing technique. This switch structure is applicable to transparent switching networks such as subscriber line concentrators and inter-module connectors.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masayasu YAMAGUCHI, Tohru MATSUNAGA, Seiiti SHIRAI, Ken-ichi YUKIMATSU, "Analog Free-Space Optical Switch Structure Based on Cascaded Beam Shifters" in IEICE TRANSACTIONS on Communications,
vol. E77-B, no. 2, pp. 163-173, February 1994, doi: .
Abstract: This paper describes a new free-space optical switch structure based on cascaded beam shifters (each consists of a liquid-crystal polarization controller array and a birefringent plate). This structure comprises 2-input, 2-output switching elements that are locally connected by links. It is applicable to a variety of switching networks, such as a Clos network. The switching network based on this structure is an analog switch that is transparent to signal format, bit rate, and modulation type, so it can handle various types of optical signals. Theoretical feasibility studies indicate that compact large-scale switches (i.e., 100-1000 ports) with relay lens systems can be implemented using beam shifters with a 0.4-dB insertion loss and a 30-dB extinction ratio. Experimental feasibility studies indicate that a 1024-cell beam shifter module with a 0.5-dB insertion loss and a 23-dB extinction ratio is possible at present. An alignment-free assembly technique using precise alignment guides is also confirmed. An experimental 8-stage, 1024-input 256-output concentrator shows low insertion loss characteristics (6.8dB on average) owing to the low-loss beam shifters and the alignment-free assembly technique. Practical switching networks mainly require the improvement of the extinction ratio of the beam shifter module and the development of a fiber pig-tailing technique. This switch structure is applicable to transparent switching networks such as subscriber line concentrators and inter-module connectors.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/e77-b_2_163/_p
Copy
@ARTICLE{e77-b_2_163,
author={Masayasu YAMAGUCHI, Tohru MATSUNAGA, Seiiti SHIRAI, Ken-ichi YUKIMATSU, },
journal={IEICE TRANSACTIONS on Communications},
title={Analog Free-Space Optical Switch Structure Based on Cascaded Beam Shifters},
year={1994},
volume={E77-B},
number={2},
pages={163-173},
abstract={This paper describes a new free-space optical switch structure based on cascaded beam shifters (each consists of a liquid-crystal polarization controller array and a birefringent plate). This structure comprises 2-input, 2-output switching elements that are locally connected by links. It is applicable to a variety of switching networks, such as a Clos network. The switching network based on this structure is an analog switch that is transparent to signal format, bit rate, and modulation type, so it can handle various types of optical signals. Theoretical feasibility studies indicate that compact large-scale switches (i.e., 100-1000 ports) with relay lens systems can be implemented using beam shifters with a 0.4-dB insertion loss and a 30-dB extinction ratio. Experimental feasibility studies indicate that a 1024-cell beam shifter module with a 0.5-dB insertion loss and a 23-dB extinction ratio is possible at present. An alignment-free assembly technique using precise alignment guides is also confirmed. An experimental 8-stage, 1024-input 256-output concentrator shows low insertion loss characteristics (6.8dB on average) owing to the low-loss beam shifters and the alignment-free assembly technique. Practical switching networks mainly require the improvement of the extinction ratio of the beam shifter module and the development of a fiber pig-tailing technique. This switch structure is applicable to transparent switching networks such as subscriber line concentrators and inter-module connectors.},
keywords={},
doi={},
ISSN={},
month={February},}
Copy
TY - JOUR
TI - Analog Free-Space Optical Switch Structure Based on Cascaded Beam Shifters
T2 - IEICE TRANSACTIONS on Communications
SP - 163
EP - 173
AU - Masayasu YAMAGUCHI
AU - Tohru MATSUNAGA
AU - Seiiti SHIRAI
AU - Ken-ichi YUKIMATSU
PY - 1994
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E77-B
IS - 2
JA - IEICE TRANSACTIONS on Communications
Y1 - February 1994
AB - This paper describes a new free-space optical switch structure based on cascaded beam shifters (each consists of a liquid-crystal polarization controller array and a birefringent plate). This structure comprises 2-input, 2-output switching elements that are locally connected by links. It is applicable to a variety of switching networks, such as a Clos network. The switching network based on this structure is an analog switch that is transparent to signal format, bit rate, and modulation type, so it can handle various types of optical signals. Theoretical feasibility studies indicate that compact large-scale switches (i.e., 100-1000 ports) with relay lens systems can be implemented using beam shifters with a 0.4-dB insertion loss and a 30-dB extinction ratio. Experimental feasibility studies indicate that a 1024-cell beam shifter module with a 0.5-dB insertion loss and a 23-dB extinction ratio is possible at present. An alignment-free assembly technique using precise alignment guides is also confirmed. An experimental 8-stage, 1024-input 256-output concentrator shows low insertion loss characteristics (6.8dB on average) owing to the low-loss beam shifters and the alignment-free assembly technique. Practical switching networks mainly require the improvement of the extinction ratio of the beam shifter module and the development of a fiber pig-tailing technique. This switch structure is applicable to transparent switching networks such as subscriber line concentrators and inter-module connectors.
ER -