1-2hit |
Riichi KUDO Matthew COCHRANE Kahoko TAKAHASHI Takeru INOUE Kohei MIZUNO
Autonomous mobility machines, such as self-driving cars, transportation robots, and automated construction machines, are promising to support or enrich human lives. To further improve such machines, they will be connected to the network via wireless links to be managed, monitored, or remotely operated. The autonomous mobility machines must have self-status based on their positioning system to safely conduct their operations without colliding with other objects. The self-status is not only essential for machine operation but also it is valuable for wireless link quality management. This paper presents self-status-based wireless link quality prediction and evaluates its performance by using a prototype mobility robot combined with a wireless LAN system. The developed robot has functions to measure the throughput and receive signal strength indication and obtain self-status details such as location, direction, and odometry data. Prediction performance is evaluated in offline processing by using the dataset gathered in an indoor experiment. The experiments clarified that, in the 5.6 GHz band, link quality prediction using self-status of the robot forecasted the throughput several seconds into the future, and the prediction accuracies were investigated as dependent on time window size of the target throughput, bandwidth, and frequency gap.
Atsushi TANIGUCHI Takeru INOUE Kohei MIZUNO Takashi KURIMOTO Atsuko TAKEFUSA Shigeo URUSHIDANI
Communication networks are now an essential infrastructure of society. Many services are constructed across multiple network domains. Therefore, the reliability of multi-domain networks should be evaluated to assess the sustainability of our society, but there is no known method for evaluating it. One reason is the high computation complexity; i.e., network reliability evaluation is known to be #P-complete, which has prevented the reliability evaluation of multi-domain networks. The other reason is intra-domain privacy; i.e., network providers never disclose the internal data required for reliability evaluation. This paper proposes a novel method that computes the lower and upper bounds of reliability in a distributed manner without requiring privacy disclosure. Our method is solidly based on graph theory, and is supported by a simple protocol that secures intra-domain privacy. Experiments on real datasets show that our method can successfully compute the reliability for 14-domain networks in one second. The reliability is bounded with reasonable errors; e.g., bound gaps are less than 0.1% for reliable networks.