1-3hit |
Seiji KAJIHARA Koji ISHIDA Kohei MIYASE
This paper presents a test vector modification method for reducing average power dissipation during test application for a full-scan circuit. The method first identifies a set of don't care (X) inputs of given test vectors, to which either logic value 0 or 1 can be assigned without losing fault coverage. Then, the method reassigns logic values to the X inputs so as to decrease switching activity of the circuit during scan shifting. Experimental results for benchmark circuits show the proposed method could decrease switching activity of a given test set to 45% of the original test sets in average.
Yoshimasa SUGIMOTO Yu TANAKA Naoki IKEDA Kyozo KANAMOTO Yusui NAKAMURA Shunsuke OHKOUCHI Hitoshi NAKAMURA Kuon INOUE Hidekazu SASAKI Yoshinori WATANABE Koji ISHIDA Hiroshi ISHIKAWA Kiyoshi ASAKAWA
We have fabricated several two-dimensional photonic-crystal (2DPC) slab waveguides by using fine electron beam lithography and dry etching. The 2DPC waveguides include straight, bend, Y-branch, directional coupler, and coupled-cavity waveguides on the GaAs/AlGaAs substrate as an application to the ultra-small and ultra-fast all-optical switching device. Transmission spectra and near field patterns were characterized in a wide wavelength range from 850 to 1600 nm with the sample finished to the air-bridge type 2DPC slab. These waveguides appear to be suitable for achieving the waveguide platform in the symmetrical-Mach-Zehnder device.
Keijiro HIRAHARA Toshio FUJII Koji ISHIDA Satoshi ISHIHARA
An optical communications technology roadmap leading up to the second decade of the 21st century has been investigated to provide a future vision of the optoelectronic technology in 15 to 20 years. The process whereby technology may progress toward the realization of the vision is indicated. A transmission rate of 100 Mbps for homes and a rate of 5 Tbps for the backbone network will be required in the first decade of the 21 century. Two technology roadmaps for public and business communications networks are discussed. It is concluded both WDM and TDM technology will be required to realize such an ultra-high capacity transmission. Technical tasks for various optical devices are investigated in detail.