Author Search Result

[Author] Ling XU(2hit)

1-2hit
  • A Network Clustering Algorithm for Sybil-Attack Resisting

    Ling XU  Ryusuke EGAWA  Hiroyuki TAKIZAWA  Hiroaki KOBAYASHI  

     
    PAPER

      Vol:
    E94-D No:12
      Page(s):
    2345-2352

    The social network model has been regarded as a promising mechanism to defend against Sybil attack. This model assumes that honest peers and Sybil peers are connected by only a small number of attack edges. Detection of the attack edges plays a key role in restraining the power of Sybil peers. In this paper, an attack-resisting, distributed algorithm, named Random walk and Social network model-based clustering (RSC), is proposed to detect the attack edges. In RSC, peers disseminate random walk packets to each other. For each edge, the number of times that the packets pass this edge reflects the betweenness of this edge. RSC observes that the betweennesses of attack edges are higher than those of the non-attack edges. In this way, the attack edges can be identified. To show the effectiveness of RSC, RSC is integrated into an existing social network model-based algorithm called SOHL. The results of simulations with real world social network datasets show that RSC remarkably improves the performance of SOHL.

  • Automated Duplicate Bug Report Detection Using Multi-Factor Analysis

    Jie ZOU  Ling XU  Mengning YANG  Xiaohong ZHANG  Jun ZENG  Sachio HIROKAWA  

     
    PAPER-Software Engineering

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:7
      Page(s):
    1762-1775

    The bug reports expressed in natural language text usually suffer from vast, ambiguous and poorly written, which causes the challenge to the duplicate bug reports detection. Current automatic duplicate bug reports detection techniques have mainly focused on textual information and ignored some useful factors. To improve the detection accuracy, in this paper, we propose a new approach calls LNG (LDA and N-gram) model which takes advantages of the topic model LDA and word-based model N-gram. The LNG considers multiple factors, including textual information, semantic correlation, word order, contextual connections, and categorial information, that potentially affect the detection accuracy. Besides, the N-gram adopted in our LNG model is improved by modifying the similarity algorithm. The experiment is conducted under more than 230,000 real bug reports of the Eclipse project. In the evaluation, we propose a new evaluation metric, namely exact-accuracy (EA) rate, which can be used to enhance the understanding of the performance of duplicates detection. The evaluation results show that all the recall rate, precision rate, and EA rate of the proposed method are higher than treating them separately. Also, the recall rate is improved by 2.96%-10.53% compared to the state-of-art approach DBTM.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.