A Network Clustering Algorithm for Sybil-Attack Resisting

Ling XU, Ryusuke EGAWA, Hiroyuki TAKIZAWA, Hiroaki KOBAYASHI

  • Full Text Views

    0

  • Cite this

Summary :

The social network model has been regarded as a promising mechanism to defend against Sybil attack. This model assumes that honest peers and Sybil peers are connected by only a small number of attack edges. Detection of the attack edges plays a key role in restraining the power of Sybil peers. In this paper, an attack-resisting, distributed algorithm, named Random walk and Social network model-based clustering (RSC), is proposed to detect the attack edges. In RSC, peers disseminate random walk packets to each other. For each edge, the number of times that the packets pass this edge reflects the betweenness of this edge. RSC observes that the betweennesses of attack edges are higher than those of the non-attack edges. In this way, the attack edges can be identified. To show the effectiveness of RSC, RSC is integrated into an existing social network model-based algorithm called SOHL. The results of simulations with real world social network datasets show that RSC remarkably improves the performance of SOHL.

Publication
IEICE TRANSACTIONS on Information Vol.E94-D No.12 pp.2345-2352
Publication Date
2011/12/01
Publicized
Online ISSN
1745-1361
DOI
10.1587/transinf.E94.D.2345
Type of Manuscript
Special Section PAPER (Special Section on Parallel and Distributed Computing and Networking)
Category

Authors

Keyword

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.