1-2hit |
Xuefang NIE Yang WANG Liqin DING Jiliang ZHANG
Cellular heterogeneous networks (HetNets) with densely deployed small cells can effectively boost network capacity. The co-channel interference and the prominent energy consumption are two crucial issues in HetNets which need to be addressed. Taking the traffic variations into account, this paper proposes a theoretical framework to analyze spectral efficiency (SE) and energy efficiency (EE) considering jointly further-enhanced inter-cell interference coordination (FeICIC) and spectrum allocation (SA) via a stochastic geometric approach for a two-tier downlink HetNet. SE and EE are respectively derived and validated by Monte Carlo simulations. To create spectrum and energy efficient HetNets that can adapt to traffic demands, a non-convex optimization problem with the power control factor, resource partitioning fraction and number of subchannels for the SE and EE tradeoff is formulated, based on which, an iterative algorithm with low complexity is proposed to achieve the sub-optimal solution. Numerical results confirm the effectiveness of the joint FeICIC and SA scheme in HetNets. Meanwhile, a system design insight on resource allocation for the SE and EE tradeoff is provided.
Liming LI Yang WANG Liqin DING
Filter bank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) is considered an alternative to conventional orthogonal frequency division multiplexing (OFDM) to meet the various requirements proposed by future communication networks. Among the different perspectives on the merits of FBMC-OQAM and OFDM, a straightforward metric is the bit error probability (BEP). This paper presents a general analytical framework for BEP evaluation that is applicable to FBMC-OQAM and OFDM systems in both Rayleigh and Rician multipath fading channels. Explicit BEP expressions are derived for Gray-coded pulse amplitude modulation (PAM) and square quadrature amplitude modulation (QAM) signals with arbitrary constellation sizes. The theoretical analysis results show excellent agreement with the numerical simulation results in different channel scenarios.