1-2hit |
Masafumi NAGASAKA Masaaki KOJIMA Takuma TORII Hiromitsu UTSUMI Koji YAMANAKA Shintaro SHINJO Mitsuhiro SHIMOZAWA Hisashi SUJIKAI
Satellite broadcasting of 4K/8K ultra-high definition television (UHDTV) was launched in Japan in December 2018. Because this system uses the amplitude and phase shift keying (APSK) modulation scheme, there is a need to improve the non-linear characteristics of the satellite transponders. To meet this requirement, we have been developing a 120-W-class Ku-band solid state power amplifier (SSPA) as a replacement for the currently used traveling wave tube amplifier (TWTA). In this study, we developed a gallium-nitride (GaN) SSPA and linearizer (LNZ). The SSPA achieved an output power of 120W while maintaining a power added efficiency (PAE) of 31%. We evaluated the transmission performance of 16APSK in this SSPA channel in comparison with that in the TWTA channel.
Masafumi NAGASAKA Masaaki KOJIMA Hisashi SUJIKAI Jiro HIROKAWA
In December 2018, satellite broadcasting for 4K/8K ultra-high-definition television (UHDTV) will begin in Japan. It will be provided in the 12-GHz (11.7 to 12.75GHz) band with right- and left-hand circular polarizations. BSAT-4a, a satellite used for broadcasting UHDTV, was successfully launched in September 2017. This satellite has not only 12-GHz-band right- and left-hand circular polarization transponders but also a 21-GHz-band experimental transponder. The 21-GHz (21.4 to 22.0GHz) band has been allocated as the downlink for broadcasting satellite service in ITU-R Regions 1 (Europe, Africa) and 3 (Asia Pacific). To receive services provided over these two frequency bands and with dual-polarization, we implement and evaluated a dual-band and dual-circularly polarized parabolic reflector antenna fed by 12- and 21-GHz-band microstrip antenna arrays with a multilayer structure. The antenna is used to receive 12- and 21-GHz-band signals from in-orbit satellites. The measured and experimental results prove that the proposed antenna performs as a dual-polarized antenna in those two frequency bands and has sufficient performance to receive satellite broadcasts.