Author Search Result

[Author] Masami NAKAJIMA(2hit)

1-2hit
  • Design and Evaluation of a Massively Parallel Processor Based on Matrix Architecture

    Toru SHIMIZU  Masami NAKAJIMA  Masahiro KAINAGA  

     
    INVITED PAPER

      Vol:
    E89-C No:11
      Page(s):
    1512-1518

    This paper describes the design and evaluation of a massively parallel processor base on Matrix architecture which is suitable for portable multimedia applications. The proposed architecture in this paper achieves 40 GOPS of 16-bit fixed-point additions at 200 MHz clock frequency and 250 mW power dissipation. In addition, 1 M-bit SRAM for data registers and 2,048 2-bit processing elements connected by a flexible switching network are integrated in 3.1 mm2 in 90 nm low-power CMOS technology. The energy-efficient Matrix architecture supports 2,048-way parallel operations and the programmable functions required for multimedia SoCs.

  • Design of Highly Parallel Linear Digital System for ULSI Processors

    Masami NAKAJIMA  Michitaka KAMEYAMA  

     
    PAPER-Multiple-Valued Architectures and Systems

      Vol:
    E76-C No:7
      Page(s):
    1119-1125

    To realize next-generation high performance ULSI processors, it is a very important issue to reduce the critical delay path which is determined by a cascade chain of basic gates. To design highly parallel digital operation circuits such as an adder and a multiplier, it is difficult to find the optimal code assignment in the non-linear digital system. On the other hand, the use of the linear concept in the digital system seems to be very attractive because analytical methods can be utilized. To meet the requirement, we propose a new design method of highly parallel linear digital circuits for unary operations using the concept of a cycle and a tree. In the linear digital circuit design, the analytical method can be developed using a representation matrix, so that the search procedure for optimal locally computable circuits becomes very simple. The evaluations demonstrate the usefulness of the circuit design algorithm.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.