1-2hit |
Minho KWON Jungyoon LEE Gunhee HAN
A band-pass delta-sigma modulator (BPDSM) is a key building block to implement a digital intermediate frequency (IF) receiver in a wireless communication system. This paper proposes a time-interleaved (TI) switched-capacitor (SC) BPDSM architecture that consists of 5-stage TI blocks with recursive loop. The proposed TI BPDSM provides reduction in the clock frequency requirement by a factor of 5 and relaxes the settling time requirement to one-fourth of conventional approach. The test chip was designed and fabricated for a 30-MHz IF system with a 0.35-µm CMOS process. The measured peak SNR for a 200-kHz bandwidth is 63 dB while dissipating 75 mW from a 3.3-V supply and occupying 1.3 mm2.
Minho KWON Youngcheol CHAE Gunhee HAN
In a switched-capacitor (SC) circuit, the major block is an operational transconductance amplifier (OTA) designed in order to form a feedback loop. However, the OTA is the block that consumes most of the power in SC circuits. This paper proposes the use of a class-C inverter instead of the OTA in SC circuits and a corresponding switches configuration for extremely low power applications. A detailed analysis and design trade-offs are also provided. Simulation and experimental results show that sufficient performance can be obtained even though a class-C inverter is used. The second-order biquad filter and the second-order SC sigma-delta (ΣΔ) modulator based on a class-C inverter are designed. These circuits have been fabricated with a 0.35-µm CMOS process. The measurement results of the fabricated SC biquad filter show a 59-dB signal-to-noise-plus-distortion ratio (SNDR) for a 0.2-Vp-p input signal and 0.9-V dynamic ranges. The power consumption of the biquad filter is only 0.4 µW with a 1-V power supply. The measurement results of the fabricated ΣΔ modulator show a 61-dB peak SNR for a 1.6-kHz bandwidth with a sample rate of 200 kHz. The modulator consumes 0.8 µW with a 1-V power supply.