Author Search Result

[Author] Noboru WAKATSUKI(13hit)

1-13hit
  • Analysis of Nonohmic Piezoelectric Resonator Contacts

    Noboru WAKATSUKI  Masaaki ONO  Kenji FUKAYAMA  Masanori YACHI  

     
    PAPER-Actuator and Resonator

      Vol:
    E77-C No:10
      Page(s):
    1587-1591

    Single-crystal LiNbO3 and LiTaO3 piezo-electric resonators were developed for surface-mount technology (SMT) used in electronic equipment manufacturing. Using an energy-trapping design, a shear-mode piezoelectric resonator chip is bonded directly to the board with conductive resin and covered with a ceramic cap. The process occasionally produces nonlinear resonators, however, which led us to study the frequency characteristics of impedances for the abnormal samples. Their input impedances at the resonant frequency depended on the driving voltage. The insulator between the thin film metal electrode on the crystal strip or the thick film electrode on the ceramic base, in conjunction with silver balls in the adhesive resin, apparently caused the problem. Assuming that the insulator makes diode contacts, which show stable nonohmic phenonena or cause a discharge in a conductor causing a drastically changing in the impedance, we proposed the following corrective action:subject the nonohmic contacts to a high-voltage frequency-swept signal near the resonant frequency. The samples subjected to the high voltages recovered metalic contact and maintained even after severe thermal cycle testing.

  • Breaking Contact Phenomena of a Time-coordinated Non-arcing Relay

    Noboru WAKATSUKI  Hiroshi HONMA  

     
    PAPER-Contact Phenomena

      Vol:
    E91-C No:8
      Page(s):
    1206-1210

    VI time responses of a conventional electromagnetic relay during breaking contact operations were measured. In a conventional switching circuit, unstable contact resistance, irregular bouncing, and poor reproducibility were confirmed. Using a transient current switch circuit and two sharpened contact electrodes, bouncing during a breaking operation was suppressed, and unstable contact resistance changes and reproducibility of breaking operation were also improved.

  • Equivalent Circuit Analysis for Time-Coordinated Non-arcing Operation of Reed Switches

    Noboru WAKATSUKI  Yu YONEZAWA  Atsushi YAMAMOTO  

     
    PAPER-Relays & Switches

      Vol:
    E89-C No:8
      Page(s):
    1182-1186

    We proposed a method for suppressing arc ignition in mechanical contact devices using a transient current switch and a capacitor. We applied the method to conventional reed switches. For the electric circuit analysis, we clarified the momentary voltage-current characteristics at breaking operation of reed switches by FEM analysis. We could also estimate the capacitance of the contact electrodes at the metal bridge rupture by FEM analysis, and would derive the non-arcing condition using SPICE simulation. The suitable capacitor value in the transient current circuit for arc ignition suppression would be depend on the load impedance, the power supply, the time depending contact resistance R(t)s, the contact capacitance, and the minimum arc voltage and current.

  • FOREWORD Open Access

    Noboru WAKATSUKI  

     
    FOREWORD

      Vol:
    E93-C No:9
      Page(s):
    1379-1379
  • Relay Contacts of Multi-Electrodes with Timely Controlled Operation

    Yu YONEZAWA  Noboru WAKATSUKI  

     
    PAPER-Contactor and Relay

      Vol:
    E87-C No:8
      Page(s):
    1324-1328

    We propose a new electric contact device that greatly improves arc discharge characteristics. Electric contact functions are divided into an energizing operation and a switching operation. A capacitor is connected in series to a contact for switching contact. Using two conventional relay contacts, no arc operation is confirmed for a 42 V/3 A break operation. Contact resistances are measured over many operations, and the surfaces of electrodes are observed. A chip capacitor is arranged at one side of the contact electrodes of a twin relay, confirming the possibility of miniaturization.

  • Electric Measurement of Melting Phenomena for Breaking Relay Contacts

    Noboru WAKATSUKI  Nobuo TAKATSU  Masahiro OIKAWA  

     
    PAPER-Arc Discharge & Contact Phenomena

      Vol:
    E92-C No:8
      Page(s):
    998-1002

    Using the transient current switch circuit in parallel with the energizing switching contacts for timely control of breaking operation, the increase of contact voltage is suppressed at the last stage of the breaking of electric contacts. Breaking contact voltage Vc and current Ic of electromagnetic relays with Ag contacting electrodes were measured with 12.5-50 V and 0.1-20 A for two hinge springs (Spring constants; 2 N/mm and 0.2 N/mm). The current-decreasing process was clearly measured at the melting voltage Um. After Vc=Um, the breaking time of contact current did not depend on mechanical motion controlled by the two hinge springs and energizing power-supply voltage, but depended on the contact current. The residue of melt electrode was observed optically as a white fusion spot, with radius depending on the energizing current.

  • Influence of Shear Vibration over Au-Au Electric Contact Phenomenon

    Yu YONEZAWA  Noboru WAKATSUKI  

     
    PAPER-Contact Phenomena

      Vol:
    E86-C No:6
      Page(s):
    902-907

    A LiNbO3 piezoelectric actuator controls the Au-Au contact gap. The control accuracy of the actuator is within the sub-micron range. Contact voltage, contact current, displacement of electrodes and driving voltage of the actuator were continuously and synchronously recorded by an A/D converter and send to a computer. The measured oscillograph data for 1500 contact operation were processed by the computer. Factors of discharge and bridge phenomena were derived at a contact operation. The delay time between displacement and driving signal of the actuator increased when one side of electric contact were vibrated. The resonance was seen in the actuator, and the dependency to the current and the amplitude was seen.

  • Mechanical Fracture of Piezoelectric Single Crystal Chip Resonator due to High Input Power

    Noboru WAKATSUKI  Takatoshi OKUDA  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1422-1426

    Using LiTaO3 and LiNbO3 single crystals, we wish to miniaturize a powerful ultrasonic vibrator. We studied the method of measuring mechanical fractures of resonators with good reproducibility and collected data on mechanical fractures of crystals due to high input electric power. Chip resonators with a 4 MHz and 8 MHz shear mode were selected for the test samples. The driving frequency was swept near the resonance frequency, the duration time was short enough to raise the resonant vibrations and the driving voltage increased in one-volt increments. The method is free from unstable temperature increases. Values of the fracture limit for the driving current were measured and transformed to mechanical vibration velocities. These showed a nearly normal distribution. It was a surprise that concavity in the crater was observed at the center of the 16 MHz LiNbO3 resonator due to high input power. It was confirmed that the elastic fracture limit was latently very high for LiNbO3 and LiTaO3 single crystals.

  • Improving the Sensitivity of H-Type LiTaO3 Piezoelectric Crystal Gyroscopes

    Noboru WAKATSUKI  Hiroshi TANAKA  

     
    PAPER

      Vol:
    E82-C No:1
      Page(s):
    60-65

    We propose and experimentally confirm two approaches to improve the sensitivity of the H-type piezoelectric crystal gyroscope of LiTaO3. One is to adjust the resonant frequencies of the fz mode through additional mass control; the other is to change the driving mode from fx mode to fz mode, while the driving frequency is the resonant frequency of the fx mode. The sensitivity of the unit driving voltage is almost the same, but the threshold driving voltage level may increase more than 1,000 times, because it is far from the mechanical resonance. The high sensitivity of 0.11 pC (deg/sec) was obtained at a driving voltage of 30 Vpp.

  • Analytical Model of Melting Phenomena for Breaking Relay Contacts

    Noboru WAKATSUKI  Nobuo TAKATSU  Toshiteru MAEDA  Takayuki KUDO  

     
    PAPER-Arc Discharge & Contact Phenomena

      Vol:
    E92-C No:8
      Page(s):
    1003-1007

    Using the transient current switch circuit in parallel with the energizing contacts, the slow decay of the contact current due to thermal fusion of metal was observed just after the contact voltage exceeded the melting contact voltage Um. At that time, the contact voltage was higher than the boiling contact voltage Ub. These results contradict Holm's θ theory. A new melting model of breaking mechanical contact is proposed. The area surrounding a cluster of contacting a-spots melts, the melt metal diffuses, and the contact spot thermally shrinks. Including the metal phase transition from solid to liquid, the increase of contact resistance is introduced to the electric circuit analysis. The numerical analysis agrees qualitatively with measured V-I characteristics.

  • Measurement of Bouncing of Reed Switch Due to Coulomb's Electrostatic Force

    Hiroshi HONMA  Noboru WAKATSUKI  

     
    PAPER-Relays & Switches

      Vol:
    E90-C No:7
      Page(s):
    1455-1459

    A movable electrode in conventional electromechanical contacts often shows a bounce against the opposite electrode during a make and break operation. Frequent bounces are troublesome. We studied this phenomenon with conventional reed switches using a slowly increasing and decreasing driving current. Judging from the measured data, Coulomb's electrostatic force cannot be neglected in efforts to suppress bounce.

  • Fabrication Process of Nonarcing Power MEMS Switch

    Yu YONEZAWA  Noboru WAKATSUKI  Yoshio SATOH  Tadashi NAKATANI  Koichiro SAWA  

     
    PAPER-Relays and Switches

      Vol:
    E88-C No:8
      Page(s):
    1629-1634

    We proposed a new electric contact device that suppresses the arc phenomena. The functions of electric contacts are divided into energizing and switching for arc suppression. Switching contacts consist of multielectrodes and each electrode current is suppressed by the series resistance. For realization of multicontacting, cantilever beam array electrodes were formed on a silicon substrate using micro-electromechanical systems (MEMS) technology. The finite element method was used to optimize the structure. The fabrication process of the cantilever was examined. Au-Au contact current of 0.97 A was broken without arc ignition.

  • Time-Coordinated Switching Relay for Arc Discharge Suppression

    Noboru WAKATSUKI  Yuuich AKIBA  Yu YONEZAWA  

     
    PAPER-Relays and Switches

      Vol:
    E88-C No:8
      Page(s):
    1635-1640

    We propose a new electric contact device for arc discharge suppression. The functions of conventional electric contacts are categorized into energizing switch contacts and transient current switch contacts. A capacitor is connected in series to a transient current switch. Suppression of power consumption and arc discharge at breaking contacts are proposed, experimentally measured, and theoretically analyzed. The transient V-I characteristics at breaking contacts are controlled by the transient current switch and the capacitor. The transient responses at contacts were numerically derived by SPICE, and the energizing switch contacts voltage could be controlled to less than the minimum arc voltage. Using 2 conventional relays, no arc ignition at breaking contacts was confirmed for 50 V/25 A.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.