1-3hit |
Wei-Tek TSAI Xiao WEI Yinong CHEN Ray PAUL Bingnan XIAO
Current Web services testing techniques are unable to assure the desired level of trustworthiness, which presents a barrier to WS applications in mission and business critical environments. This paper presents a framework that assures the trustworthiness of Web services. New assurance techniques are developed within the framework, including specification verification via completeness and consistency checking, test case generation, and automated Web services testing. Traditional test case generation methods only generate positive test cases that verify the functionality of software. The proposed Swiss Cheese test case generation method is designed to generate both positive and negative test cases that also reveal the vulnerability of Web services. This integrated development process is implemented in a case study. The experimental evaluation demonstrates the effectiveness of this approach. It also reveals that the Swiss Cheese negative testing detects even more faults than positive testing and thus significantly reduces the vulnerability of Web services.
Nong CHEN Jesse DARJA Shinichi NARATA Kenji IKEDA Kazuhiro NISHIDE Yoshiaki NAKANO
In this paper we modeled and analyzed the ridge type InGaAlAs/InP semiconductor laser with lateral current confinement structure, and optimized the design for the ridge wave guide with the current confinement. We proposed and fabricated the ridge type InGaAlAs/InP laser with a cost effective selective undercut etching method and demonstrated the improvement of the ridge laser performance. This paper provides a solution to solve the cost/yield issue for conventional BH (buried hetero-structure) type laser and performance issue for conventional ridge type laser.
Yinong CHEN Zhongshi HE Yufang TIAN
The heterogeneous autonomous decentralized system technology offers a way to integrate different types of context-related autonomous decentralized (sub) systems into a coherent system. The aim of this research is to model and evaluate the communication capacity among the subsystems connected by communication gateways of a heterogeneous autonomous decentralized system. Failures of subsystems and communication gateways in the system are taken into account. We use graphs to represent the topologies of heterogeneous autonomous decentralized systems and use the residual connectedness reliability (RCR) to characterize the communication capacity among its subsystems connected by its gateways. This model enables us to share research results obtained in residual connectedness reliability study in graph theory. Not to our surprise, we learnt soon that computing RCR of general graphs is NP-hard. But to our surprise, there exist no efficient approximation algorithms that can give a good estimation of RCR for an arbitrary graph when both vertices and edges may fail. We proposed in this paper a simulation scheme that gave us good results for small to large graphs but failed for very large graphs. Then we applied a theoretical bounding approach. We obtained expressions for upper and lower bounds of RCR for arbitrary graphs. Both upper and lower bound expressions can be computed in polynomial time. We applied these expressions to several typical graphs and showed that the differences between the upper and lower bounds tend to zero as the sizes of graphs tend to infinite. The contributions of this research are twofold, we find an efficient way to model and evaluate the communication capacity of heterogeneous autonomous decentralized systems; we contribute an efficient algorithm to estimate RCR in general graph theory.