1-7hit |
Toshio ITO Naoto YOSHIMOTO Osamu MITOMI Katsuaki MAGARI Ikuo OGAWA Fumihiro EBISAWA Yasufumi YAMADA Yuji HASUMI
We studied 2 types of polarization insensitive semiconductor optical amplifier (SOA) gates for use in wavelength division multiplexing (WDM) applications: 1) a low operation current SOA gate with a small and square bulk active region but without spot-size converters and 2) a multi channel SOA gate array with tapered waveguide spot-size converters (SS-SOA) on both sides. The low operation current SOA gate provided a very low current for fiber-to-fiber loss-less operation (5. 4-7. 0 mA) and a high extinction ratio (>30 dB) over a wide wavelength range (1530-1580 nm). For multi channel array assembling, the SS is indispensable. The 4-channel SS-SOA gate array was assembled on a planar lightwave circuit (PLC) platform for the first time. The gain characteristics of each channel were very similar and a low fiber-to-fiber loss-less current of 33 mA and a high extinction ratio of nearly 40 dB were achieved in all channels. The polarization dependence was less than 1 dB. Using the fully packaged 4-channel hybrid gate array module (a 4 channel SS-SOA on PLC platform), an ultra-wide-band (1530-1600 nm) high speed wavelength selector was successfully demonstrated. Both rise- and fall-times were less than 1 ns, which makes the wavelength selector suitable for high-speed optical packet switching. Electrical and optical interference between channels were negligible.
Kazuto NOGUCHI Hiroshi MIYAZAWA Osamu MITOMI
This paper describes the design, fabrication, and performance of a novel Ti:LiNbO3 optical modulator with a two-stage coplanar waveguide electrode for 40 Gbit/s optical transmission systems. The structure consists of a thin lower electrode and a thick upper electrode in conjunction with a ridge structure. The lower electrode ensures low voltage and the upper layer provides good microwave characteristics. Based on simulation results, a fully-packaged module was fabricated. The measured 3-dB electrical bandwidth is 30 GHz with a half-wave voltage of 2. 9 V.
Jungo KONDO Kenji AOKI Tetsuya EJIRI Yuichi IWATA Akira HAMAJIMA Osamu MITOMI Makoto MINAKATA
We examined a Ti-diffused optical waveguide formed on a thin X-cut LiNbO3 substrate for a lower-drive-voltage modulator. Under the single-mode condition, optical mode-size decreases with LiNbO3 substrate thickness below 10 µm. A thin-sheet LiNbO3 modulator could achieve a low-drive-voltage of 1.3 V with a bandwidth of 15 GHz by adopting a narrow electrode-gap.
Toshio ITO Ikuo OGAWA Yasumasa SUZAKI Katsuaki MAGARI Yoshihiro KAWAGUCHI Osamu MITOMI
Simultaneous wavelength conversion of multi-WDM channels is expected to be a key technique in near-future networks. In this paper, 4-channel wavelength conversion using four-wave mixing (FWM) in a hybrid wavelength selector is successfully demonstrated. The wavelength selector consists of two four-channel spot-size-converter-integrated semiconductor optical amplifier (SS-SOA) gate arrays on a planar-lightwave-circuit (PLC) platform and two PLC-arrayed-waveguide-gratings (AWGs). As the wavelength selector has an individual SS-SOA for the wavelength conversion of each channel, there is negligible interference between channels. Four WDM channels with an 2.5 Gb/s modulation were converted from 1555 to 1575 nm. Clear eye openings and only a small power penalty of less than 0.5 dB were observed. The receiver sensitivity was -31 dBm at a bit error rate (BER) of 10-9.
Kazuto NOGUCHI Osamu MITOMI Hiroshi MIYAZAWA
We describe the design, fabrication, and characteristics of a push-pull type ridged Ti:LiNbO3 optical modulator with two electrodes. The structure keeps microwave propagation loss low and enables a large interaction between microwaves and optical waves under the condition of velocity and impedance matching, resulting in a large modulation bandwidth and low driving voltage. Using this structure, we have developed an optical intensity modulator with an optical 3-dB bandwidth of 45 GHz (an electrical 3-dB bandwidth of 30 GHz) and a half-wave voltage of 3.9 V in single-electdoe operation (a half-wave voltage of 1.95 V in push-pull operation)at a wavelength of 1.55µm.
An oblique-polishing tilted-coupling method for LD's and waveguides is proposed for suppressing feedback light from the endfaces. It is confirmed that the instability of coherence in DFB-LD is reduced with little excess loss.
Yoshio ITAYA Yuichi TOHMORI Hiroshi OKAMOTO Osamu MITOMI Masato WADA Kenji KAWANO Hideki FUKANO Kiyoyuki YOKOYAMA Yasumasa SUZAKI Minoru OKAMOTO Yasuhiro KONDO Isamu KOTAKA Mitsuo YAMAMOTO Masaki KOHTOKU Yoshiaki KADOTA Kenji KISHI Yoshihisa SAKAI Hiromi OOHASHI Masashi NAKAO
We studied three types of lasers emitting narrow beam divergence of output light: 1) a spot-size converter integrated laser diodes (SS-LDs) with a vertically tapered waveguide, 2) one with a laterally tapered waveguide, and 3) one consisting of a small cross section of active region. We compared them with regard to their performance in coupling efficiency to a cleaved single mode fiber, threshold current, output power, and reliability. Both the spot-size converted integrated lasers with vertically and laterally tapered waveguide repeatedly provided low threshold currents of as low as 6 mA and low coupling loss to the fiber of 1.2 to 2.5 dB in two inch wafer processes. As a result of the aging test, the SS-lasers were predicted to have the same degradation rate as a conventional buried heterostructure laser. The laser having a small cross section of active layer also has low coupling loss and high efficiency up to 85.