Author Search Result

[Author] Peng QIAN(4hit)

1-4hit
  • Leveraging Compressive Sensing for Multiple Target Localization and Power Estimation in Wireless Sensor Networks

    Peng QIAN  Yan GUO  Ning LI  Baoming SUN  

     
    PAPER-Network

      Pubricized:
    2017/02/09
      Vol:
    E100-B No:8
      Page(s):
    1428-1435

    The compressive sensing (CS) theory has been recognized as a promising technique to achieve the target localization in wireless sensor networks. However, most of the existing works require the prior knowledge of transmitting powers of targets, which is not conformed to the case that the information of targets is completely unknown. To address such a problem, in this paper, we propose a novel CS-based approach for multiple target localization and power estimation. It is achieved by formulating the locations and transmitting powers of targets as a sparse vector in the discrete spatial domain and the received signal strengths (RSSs) of targets are taken to recover the sparse vector. The key point of CS-based localization is the sensing matrix, which is constructed by collecting RSSs from RF emitters in our approach, avoiding the disadvantage of using the radio propagation model. Moreover, since the collection of RSSs to construct the sensing matrix is tedious and time-consuming, we propose a CS-based method for reconstructing the sensing matrix from only a small number of RSS measurements. It is achieved by exploiting the CS theory and designing an difference matrix to reveal the sparsity of the sensing matrix. Finally, simulation results demonstrate the effectiveness and robustness of our localization and power estimation approach.

  • Compressive Sensing Meets Dictionary Mismatch: Taylor Approximation-Based Adaptive Dictionary Algorithm for Multiple Target Localization in WSNs

    Yan GUO  Baoming SUN  Ning LI  Peng QIAN  

     
    PAPER-Network

      Pubricized:
    2017/01/24
      Vol:
    E100-B No:8
      Page(s):
    1397-1405

    Many basic tasks in Wireless Sensor Networks (WSNs) rely heavily on the availability and accuracy of target locations. Since the number of targets is usually limited, localization benefits from Compressed Sensing (CS) in the sense that measurements can be greatly reduced. Though some CS-based localization schemes have been proposed, all of these solutions make an assumption that all targets are located on a pre-sampled and fixed grid, and perform poorly when some targets are located off the grid. To address this problem, we develop an adaptive dictionary algorithm where the grid is adaptively adjusted. To achieve this, we formulate localization as a joint parameter estimation and sparse signal recovery problem. Additionally, we transform the problem into a tractable convex optimization problem by using Taylor approximation. Finally, the block coordinate descent method is leveraged to iteratively optimize over the parameters and sparse signal. After iterations, the measurements can be linearly represented by a sparse signal which indicates the number and locations of targets. Extensive simulation results show that the proposed adaptive dictionary algorithm provides better performance than state-of-the-art fixed dictionary algorithms.

  • Several Bits Are Enough: Off-Grid Target Localization in WSNs Using Variational Bayesian EM Algorithm

    Yan GUO  Peng QIAN  Ning LI  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:7
      Page(s):
    926-929

    The compressive sensing has been applied to develop an effective framework for simultaneously localizing multiple targets in wireless sensor networks. Nevertheless, existing methods implicitly use analog measurements, which have infinite bit precision. In this letter, we focus on off-grid target localization using quantized measurements with only several bits. To address this, we propose a novel localization framework for jointly estimating target locations and dealing with quantization errors, based on the novel application of the variational Bayesian Expectation-Maximization methodology. Simulation results highlight its superior performance.

  • Device-Free Targets Tracking with Sparse Sampling: A Kronecker Compressive Sensing Approach

    Sixing YANG  Yan GUO  Dongping YU  Peng QIAN  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1951-1959

    We research device-free (DF) multi-target tracking scheme in this paper. The existing localization and tracking algorithms are always pay attention to the single target and need to collect a large amount of localization information. In this paper, we exploit the sparse property of multiple target locations to achieve target trace accurately with much less sampling both in the wireless links and the time slots. The proposed approach mainly includes the target localization part and target trace recovery part. In target localization part, by exploiting the inherent sparsity of the target number, Compressive Sensing (CS) is utilized to reduce the wireless links distributed. In the target trace recovery part, we exploit the compressive property of target trace, as well as designing the measurement matrix and the sparse matrix, to reduce the samplings in time domain. Additionally, Kronecker Compressive Sensing (KCS) theory is used to simultaneously recover the multiple traces both of the X label and the Y Label. Finally, simulations show that the proposed approach holds an effective recovery performance.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.