1-2hit |
Akira YAMAZAKI Fukashi MORISHITA Naoya WATANABE Teruhiko AMANO Masaru HARAGUCHI Hideyuki NODA Atsushi HACHISUKA Katsumi DOSAKA Kazutami ARIMOTO Setsuo WAKE Hideyuki OZAKI Tsutomu YOSHIHARA
The voltage margin of an embedded DRAM's sense operation has been shrinking with the scaling of process technology. A method to estimate this margin would be a key to optimizing the memory array configuration and the size of the sense transistor. In this paper, the voltage margin of the sense operation is theoretically analyzed. The accuracy of the proposed voltage margin model was confirmed on a 0.13-µm eDRAM test chip, and the results of calculation were generally in agreement with the measured results.
Akira YAMAZAKI Takeshi FUJINO Kazunari INOUE Isamu HAYASHI Hideyuki NODA Naoya WATANABE Fukashi MORISHITA Katsumi DOSAKA Yoshikazu MOROOKA Shinya SOEDA Kazutami ARIMOTO Setsuo WAKE Kazuyasu FUJISHIMA Hideyuki OZAKI
A 23.3 mm2 32 Mb embedded DRAM (eDRAM) macro has been fabricated using 0.18 µm triple-well 4-metal embedded DRAM process technology to realize an accelerated 3-D graphics controller. The array architecture, using a dual-port sense amplifier, achieves the column access latency of two cycles at 222 MHz and a peak data rate of 14.2 4 GB/s at 4 macros. The process cost has been kept low by using VT-MOS circuit technology and taking advantage of a characteristic of dual-gate oxide process technology. A tRAC of 11.6 ns at 2.0 V is achieved using a 'pre-detect redundancy' circuit.