1-4hit |
Jingjing FU Zuying LUO Xianlong HONG Yici CAI Sheldon X.-D. TAN Zhu PAN
In this paper, we present an efficient method to budget on-chip decoupling capacitors (decaps) to optimize power delivery networks in an area efficient way. Our algorithm is based on an efficient gradient-based non-linear programming method for searching the solution. Our contributions are an efficient gradient computation method (time-domain merged adjoint network method) and a novel equivalent circuit modeling technique to speed up the optimization process. Experimental results demonstrate that the algorithm is capable of efficiently optimizing very large scale P/G networks.
In this paper, we present a novel analysis approach for large on-chip power grid circuit analysis. The new approach, called ETBR for extended truncated balanced realization, is based on model order reduction techniques to reduce the circuit matrices before the simulation. Different from the (improved) extended Krylov subspace methods EKS/IEKS, ETBR performs fast truncated balanced realization on response Gramian to reduce the original system. ETBR also avoids the adverse explicit moment representation of the input signals. Instead, it uses spectrum representation in frequency domain for input signals by fast Fourier transformation. The proposed method is very amenable for threading-based parallel computing, as the response Gramian is computed in a Monte-Carlo-like sampling style and each sampling can be computed in parallel. This contrasts with all the Krylov subspace based methods like the EKS method, where moments have to be computed in a sequential order. ETBR is also more flexible for different types of input sources and can better capture the high frequency contents than EKS, and this leads to more accurate results especially for fast changing input signals. Experimental results on a number of large networks (up to one million nodes) show that, given the same order of the reduced model, ETBR is indeed more accurate than the EKS method especially for input sources rich in high-frequency components. If parallel computing is explored, ETBR can be an order of magnitude faster than the EKS/IEKS method.
Yi ZOU Yici CAI Qiang ZHOU Xianlong HONG Sheldon X.-D. TAN
This paper presents a novel approach to reducing the complexity of the transient linear circuit analysis for a hybrid structured clock network. Topology reduction is first used to reduce the complexity of the circuits and a preconditioned Krylov-subspace iterative method is then used to perform the nodal analysis on the reduced circuits. By proper selection of the simulation time step and interval based on Elmore delays, the delay of the clock signal between the clock source and the sink node as well as the clock skews between the sink nodes can be computed efficiently and accurately. Our experimental results show that the proposed algorithm is two orders of magnitude faster than HSPICE without loss of accuracy and stability. The maximum error is within 0.4% of the exact delay time.
Sheldon X.-D. TAN C.-J. Richard SHI
A systematic and efficient approach is presented to generating simple yet accurate symbolic expressions for transfer functions and characteristics of large linear analog circuits. The approach is based on a compact determinant decision diagram (DDD) representation of exact transfer functions and characteristics. Several key tasks of generating interpretable symbolic expressions--DDD graph simplification, term de-cancellation, and dominant-term generation--are shown to be able to perform linearly by means of DDD graph operations. An efficient algorithm for generating dominant terms is presented based on the concepts of finding the k-shortest paths in a DDD graph. Experimental results show that our approach outperforms other start-of-the-art approaches, and is capable of generating interpretable expressions for typical analog blocks in minutes on modern computer workstations.