1-3hit |
Shice NI Yong DOU Kai CHEN Jie ZHOU
This letter proposes a novel high performance crypto coprocessor that relies on Reconfigurable Cryptographic Blocks. We implement the prototype of the coprocessor on Xilinx FPGA chip. And the pipelining technique is adopted to realize data paralleling. The results show that the coprocessor, running at 189MHz, outperforms the software-based SSL protocol.
Rongchun LI Yong DOU Jiaqing XU Xin NIU Shice NI
In this paper, we propose a fully parallel Turbo decoder for Software-Defined Radio (SDR) on the Graphics Processing Unit (GPU) platform. Soft Output Viterbi algorithm (SOVA) is chosen for its low complexity and high throughput. The parallelism of SOVA is fully analyzed and the whole codeword is divided into multiple sub-codewords, where the turbo-pass decoding procedures are performed in parallel by independent sub-decoders. In each sub-decoder, an efficient initialization method is exploited to assure the bit error ratio (BER) performance. The sub-decoders are mapped to numerous blocks on the GPU. Several optimization methods are employed to enhance the throughput, such as the memory optimization, codeword packing scheme, and asynchronous data transfer. The experiment shows that our decoder has BER performance close to Max-Log-MAP and the peak throughput is 127.84Mbps, which is about two orders of magnitude faster than that of central processing unit (CPU) implementation, which is comparable to application-specific integrated circuit (ASIC) solutions. The presented decoder can achieve higher throughput than that of the existing fastest GPU-based implementation.
Rongchun LI Yong DOU Yuanwu LEI Shice NI Song GUO
This paper presents a parameterized multi-standard adaptive radix-4 Viterbi decoder with high throughput and low complexity. The proposed Viterbi decoder supports constraint lengths ranging from 3-9, code rates in the range of 1/2-1/3, and arbitrary truncation lengths. We present a novel fabric of Add-Compare-Select Unit (ACSU) and methods of unsigned quantization and efficient normalization that shorten the critical path. The decoder achieves a low bit error ratio in multiple standards, such as GPRS, WiMax, LTE, CDMA, and 3G. The proposed decoder is implemented on Xilinx XC5VLX330 device and the frequency achieved is 181.7 MHz. The throughput of the proposed decoder can reach 363 Mbps, which is superior to the other current multi-standard Viterbi decoders or radix-4 Viterbi decoders on the FPGA platform.