1-3hit |
Kazunori AKABANE Nobuaki MOCHIZUKI Shigeru TERUHI Mamoru KOBAYASHI Shuichi YOSHINO Masashi SHIMIZU Kazuhiro UEHARA
In the near future, many sensors and terminals will be connected to the public network to provide various convenient IoT/M2M services. In order to connect many sensors to the network efficiently, wireless communication systems in the 920MHz band are seen as attractive solutions. We are focusing on the 920MHz band to research and develop high-capacity protocols that can accommodate many terminals, and low power consumption technologies for battery-driven terminals. In this paper, we describe the following three concrete wireless systems that use our proposals. (1) A physical distribution pallet management system that can handle thousands of pallet-embedded sensors and a wireless module with a battery lifetime of about ten years. (2) Water leakage monitoring system for underground pipes by using sensors and a wireless module in each valve box. (3) A wide-area and high-capacity radio relay system for smart metering services like the reading of gas meters. The radio relay system can accommodate various sensors and terminals and has large potential for providing various IoT/M2M services in conjunction with smart metering services.
Yo YAMAGUCHI Yosuke FUJINO Hajime KATSUDA Marina NAKANO Hiroyuki FUKUMOTO Shigeru TERUHI Kazunori AKABANE Shuichi YOSHINO
This paper presents a water leakage monitoring system that gathers acoustic data of water pipes using wireless communication technology and identifies the sound of water leakage using machine leaning technology. To collect acoustic data effectively, this system combines three types of data-collection methods: drive-by, walk-by, and static. To design this system, it is important to ascertain the wireless communication distance that can be achieved with sensors installed in a basement. This paper also reports on radio propagation from underground manholes made from reinforced concrete and resin concrete in residential and commercial areas using the 920 MHz band. We reveal that it is possible to design a practical system that uses radio communication from underground sensors.
Shigeru TERUHI Yoshihiko UEMATSU
Streaming services and visual communication services delivered over the Internet have become popular in recent years. In the future, broadband services using MPEG2/4 will become the dominant type. These services will require transport protocols that provide high quality and high throughput from end to end of the system. We propose a new transfer method that allows the network load to be adaptively balanced according to the network's state. We built a prototype of an actual MPEG2 streaming system and used it to estimate the effectiveness of this method.