Author Search Result

[Author] Shinichi TAMURA(8hit)

1-8hit
  • Segmenting the Femoral Head and Acetabulum in the Hip Joint Automatically Using a Multi-Step Scheme

    Ji WANG  Yuanzhi CHENG  Yili FU  Shengjun ZHOU  Shinichi TAMURA  

     
    PAPER-Biological Engineering

      Vol:
    E95-D No:4
      Page(s):
    1142-1150

    We describe a multi-step approach for automatic segmentation of the femoral head and the acetabulum in the hip joint from three dimensional (3D) CT images. Our segmentation method consists of the following steps: 1) construction of the valley-emphasized image by subtracting valleys from the original images; 2) initial segmentation of the bone regions by using conventional techniques including the initial threshold and binary morphological operations from the valley-emphasized image; 3) further segmentation of the bone regions by using the iterative adaptive classification with the initial segmentation result; 4) detection of the rough bone boundaries based on the segmented bone regions; 5) 3D reconstruction of the bone surface using the rough bone boundaries obtained in step 4) by a network of triangles; 6) correction of all vertices of the 3D bone surface based on the normal direction of vertices; 7) adjustment of the bone surface based on the corrected vertices. We evaluated our approach on 35 CT patient data sets. Our experimental results show that our segmentation algorithm is more accurate and robust against noise than other conventional approaches for automatic segmentation of the femoral head and the acetabulum. Average root-mean-square (RMS) distance from manual reference segmentations created by experienced users was approximately 0.68 mm (in-plane resolution of the CT data).

  • Parallel Adaptive Estimation of Hip Range of Motion for Total Hip Replacement Surgery

    Yasuhiro KAWASAKI  Fumihiko INO  Yoshinobu SATO  Shinichi TAMURA  Kenichi HAGIHARA  

     
    PAPER-Parallel Image Processing

      Vol:
    E90-D No:1
      Page(s):
    30-39

    This paper presents the design and implementation of a hip range of motion (ROM) estimation method that is capable of fine-grained estimation during total hip replacement (THR) surgery. Our method is based on two acceleration strategies: (1) adaptive mesh refinement (AMR) for complexity reduction and (2) parallelization for further acceleration. On the assumption that the hip ROM is a single closed region, the AMR strategy reduces the complexity for N N N stance configurations from O(N3) to O(ND), where 2≤D≤3 and D is a data-dependent value that can be approximated by 2 in most cases. The parallelization strategy employs the master-worker paradigm with multiple task queues, reducing synchronization between processors with load balancing. The experimental results indicate that the implementation on a cluster of 64 PCs completes estimation of 360360180 stance configurations in 20 seconds, playing a key role in selecting and aligning the optimal combination of artificial joint components during THR surgery.

  • Accurate Thickness Measurement of Two Adjacent Sheet Structures in CT Images

    Yuanzhi CHENG  Yoshinobu SATO  Hisashi TANAKA  Takashi NISHII  Nobuhiko SUGANO  Hironobu NAKAMURA  Hideki YOSHIKAWA  Shuguo WANG  Shinichi TAMURA  

     
    PAPER

      Vol:
    E90-D No:1
      Page(s):
    271-282

    Accurate thickness measurement of sheet-like structure such as articular cartilage in CT images is required in clinical diagnosis as well as in fundamental research. Using a conventional measurement method based on the zero-crossing edge detection (zero-crossings method), several studies have already analyzed the accuracy limitation on thickness measurement of the single sheet structure that is not influenced by peripheral structures. However, no studies, as of yet, have assessed measurement accuracy of two adjacent sheet structures such as femoral and acetabular cartilages in the hip joint. In this paper, we present a model of the CT scanning process of two parallel sheet structures separated by a small distance, and use the model to predict the shape of the gray-level profiles along the sheet normal orientation. The difference between the predicted and the actual gray-level profiles observed in the CT data is minimized by refining the model parameters. Both a one-by-one search (exhaustive combination search) technique and a nonlinear optimization technique based on the Levenberg-Marquardt algorithm are used to minimize the difference. Using CT images of phantoms, we present results showing that when applying the one-by-one search method to obtain the initial values of the model parameters, Levenberg-Marquardt method is more accurate than zero-crossings and one-by-one search methods for estimating the thickness of two adjacent sheet structures, as well as the thickness of a single sheet structure.

  • Attenuation Correction for X-Ray Emission Computed Tomography of Laser-Produced Plasma

    Yen-Wei CHEN  Zensho NAKAO  Shinichi TAMURA  

     
    LETTER-Image Theory

      Vol:
    E79-A No:8
      Page(s):
    1287-1290

    An attenuation correction method was proposed for laser-produced plasma emission computed tomography (ECT), which is based on a relation of the attenuation coefficient and the emission coefficient in plasma. Simulation results show that the reconstructed images are dramatically improved in comparison to the reconstructions without attenuation correction.

  • A Novel Method for Boundary Detection and Thickness Measurement of Two Adjacent Thin Structures from 3-D MR Images

    Haoyan GUO  Changyong GUO  Yuanzhi CHENG  Shinichi TAMURA  

     
    PAPER-Biological Engineering

      Pubricized:
    2014/10/29
      Vol:
    E98-D No:2
      Page(s):
    412-428

    To determine the thickness from MR images, segmentation, that is, boundary detection, of the two adjacent thin structures (e.g., femoral cartilage and acetabular cartilage in the hip joint) is needed before thickness determination. Traditional techniques such as zero-crossings of the second derivatives are not suitable for the detection of these boundaries. A theoretical simulation analysis reveals that the zero-crossing method yields considerable biases in boundary detection and thickness measurement of the two adjacent thin structures from MR images. This paper studies the accurate detection of hip cartilage boundaries in the image plane, and a new method based on a model of the MR imaging process is proposed for this application. Based on the newly developed model, a hip cartilage boundary detection algorithm is developed. The in-plane thickness is computed based on the boundaries detected using the proposed algorithm. In order to correct the image plane thickness for overestimation due to oblique slicing, a three-dimensional (3-D) thickness computation approach is introduced. Experimental results show that the thickness measurement obtained by the new thickness computation approach is more accurate than that obtained by the existing thickness computation approaches.

  • Blind Deconvolution Based on Genetic Algorithms

    Yen-Wei CHEN  Zensho NAKAO  Kouichi ARAKAKI  Shinichi TAMURA  

     
    LETTER-Neural Networks

      Vol:
    E80-A No:12
      Page(s):
    2603-2607

    A genetic algorithm is presented for the blind-deconvolution problem of image restoration without any a priori information about object image or blurring function. The restoration problem is modeled as an optimization problem, whose cost function is to be minimized based on mechanics of natural selection and natural genetics. The applicability of GA for blind-deconvolution problem was demonstrated.

  • High-Resolution Penumbral Imaging of 14-MeV Neutrons

    Yen-Wei CHEN  Noriaki MIYANAGA  Minoru UNEMOTO  Masanobu YAMANAKA  Tatsuhiko YAMANAKA  Sadao NAKAI  Tetsuo IGUCHI  Masaharu NAKAZAWA  Toshiyuki IIDA  Shinichi TAMURA  

     
    PAPER-Opto-Electronics

      Vol:
    E78-C No:12
      Page(s):
    1787-1792

    We have developed a neutron imaging system based on the penumbral imaging technique. The system consists of a penumbral aperture and a sensitive neutron detector. The aperture was made from a thick (6 cm) tungsten block with a toroidal taper. It can effectively block 14-MeV neutrons and provide a satisfactory sharp, isoplanatic (space-invariant) point spread function (PSF). A two-dimensional scintillator array, which is coupled with a gated two-stage image intensifier system and a CCD camera, was used as a sensitive neutron detector. It can record the neutron image with high sensitivity and high signal-to-noise ratio. The reconstruction was performed with a Wiener filter. The spatial resolution of the reconstructed neutron image was estimated to be 31 µm by computer simulation. Experimental demonstration has been achieved by imaging 14-MeV deuterium-tritium neutrons emitted from a laser-imploded target.

  • Automatic 3D MR Image Registration and Its Evaluation for Precise Monitoring of Knee Joint Disease

    Yuanzhi CHENG  Quan JIN  Hisashi TANAKA  Changyong GUO  Xiaohua DING  Shinichi TAMURA  

     
    PAPER-Biological Engineering

      Vol:
    E94-D No:3
      Page(s):
    698-706

    We describe a technique for the registration of three dimensional (3D) knee femur surface points from MR image data sets; it is a technique that can track local cartilage thickness changes over time. In the first coarse registration step, we use the direction vectors of the volume given by the cloud of points of the MR image to correct for different knee joint positions and orientations in the MR scanner. In the second fine registration step, we propose a global search algorithm that simultaneously determines the optimal transformation parameters and point correspondences through searching a six dimensional space of Euclidean motion vectors (translation and rotation). The present algorithm is grounded on a mathematical theory - Lipschitz optimization. Compared with the other three registration approaches (ICP, EM-ICP, and genetic algorithms), the proposed method achieved the highest registration accuracy on both animal and clinical data.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.