1-2hit |
Sonshu SAKIHARA Satoshi KITABAYASHI Naoki SAKAI Takashi OHIRA
This paper presents a novel circuit for impedance matching to a load moving along a transmission line. This system is called FERMAT: Far-End Reactor MATching. The FERMAT consists of a power transmission line and a variable reactor at its far-end. The proposed system moves standing-wave antinodes to the position of the vehicle in motion. Therefore, the moving vehicle can be fed well at any position on the line. As a theoretical result, we derive adjustable matching conditions in FERMAT. We verified that the experimental result well agrees with the theory.
Sonshu SAKIHARA Masaru TAKANA Naoki SAKAI Takashi OHIRA
This paper presents an approach to nonlinear impedance measurement exploiting an oscilloscope and Möbius transformation. Proposed system consists of a linear 4-port network and an oscilloscope. One of the port is excited by a high power source. The power is delivered to the second port, which is loaded with a DUT. Another set of two ports are used to observe a voltage set. This voltage set gives the impedance of the DUT through Möbius transformation. We formulated measurability M of the system, and derived the condition that M becomes constant for any DUT. To meet the condition, we propose a linear 4-port network consisting of a quarter-wavelength transmission line and resistors. We confirm the validity and utility of the proposed system by measuring the impedance of incandescent bulbs and an RF diode rectifier.