Sonshu SAKIHARA Satoshi KITABAYASHI Naoki SAKAI Takashi OHIRA
This paper presents a novel circuit for impedance matching to a load moving along a transmission line. This system is called FERMAT: Far-End Reactor MATching. The FERMAT consists of a power transmission line and a variable reactor at its far-end. The proposed system moves standing-wave antinodes to the position of the vehicle in motion. Therefore, the moving vehicle can be fed well at any position on the line. As a theoretical result, we derive adjustable matching conditions in FERMAT. We verified that the experimental result well agrees with the theory.
Blagovest SHISHKOV Jun CHENG Takashi OHIRA
The electronically steerable passive array radiator (ESPAR) antenna performs analog aerial beamforming that has only a single-port output and none of the signals on its passive elements can be observed. This fact and one that is more important--the highly nonlinear dependence of the output of the antenna from adjustable reactances--makes the problem substantially new and not resolvable by means of conventional adaptive array beamforming techniques. A novel approach based on stochastic approximation theory is proposed for the adaptive beamforming of the ESPAR antenna as a nonlinear spatial filter by variable parameters, thus forming both beam and nulls. Our theoretic study, simulation results and performance analysis show that the ESPAR antenna can be controlled effectively, has strong potential for use in mobile terminals and seems to be very perspective.
Kyohei YAMADA Naoki SAKAI Takashi OHIRA
Internal power losses in lumped-element impedance matching circuits are formulated by means of Q factors of the elements and port impedances to be matched. Assuming that Q factors are relatively high, the above mentioned loss is expressed by a simple formula containing only the tangents of the impedances. The formula is a powerful tool for such applications that put emphasis on power efficiency as wireless power transfer. As well as the formulation, we illustrate some design examples with the derived formula: design of the least lossy L-section circuit and two-stage low-pass ladder. The examples provide ready-to-use knowledge for low-loss matching design.
Fumio KIRA Kenji UENO Takashi OHIRA Hiroyo OGAWA
The onboard antenna beam forming network (BFN) of the next-generation communication satellites must offer multiple beam forming and beam steering. The conventional BFN, which directly controls the array elements, is not suitable for a large-scale array antenna because of the difficulty of BFN control. This paper proposes a new BFN configuration that consists of three/four-way variable power dividers and a Butler matrix (FFT circuit). This BFN can offer continuous beam steering with fewer variable components. By introducing new techniques based upon excluding FFT periods and power evaluations by definite integration, the deviation in beamwidth is reduced by 75% or more and the maximum sidelobe level is improved by 10 dB or more.
Ryoya HONDA Minoru MIZUTANI Masaya TAMURA Takashi OHIRA
This paper formulates a class-E synchronous RF rectifier from a new viewpoint. The key point is to introduce a matrix and convolute the DC terms into RF matrices. The explicit expression of input impedance is demonstrated in plane geometry. We find out their input impedance exhibits a geodesic arc in hyperbolic geometry under ZVS operation, where the theoretical RF-DC conversion efficiency results in 100%. We verify the developed theory both numerically (circuit simulation) and experimentally (6.78MHz, 100W). We confirm that the input impedance becomes a geodesic arc for a wide range of DC load resistance. The presented theory is quite elegant since it is based on a matrix-based formulation and plane-geometrical expression.
Takashi OHIRA Makoto TSUTSUMI Nobuaki KUMAGAI
A variational formula is presented for magnetostatic wave resonators. The formula is applied to the magnetized ferrite disk and ring resonators. The resonant mode charts are shown, and it is found that if the aspect of the resonator is optimized, a single mode resonance can be realized on a wide frequency range.
Sonshu SAKIHARA Masaru TAKANA Naoki SAKAI Takashi OHIRA
This paper presents an approach to nonlinear impedance measurement exploiting an oscilloscope and Möbius transformation. Proposed system consists of a linear 4-port network and an oscilloscope. One of the port is excited by a high power source. The power is delivered to the second port, which is loaded with a DUT. Another set of two ports are used to observe a voltage set. This voltage set gives the impedance of the DUT through Möbius transformation. We formulated measurability M of the system, and derived the condition that M becomes constant for any DUT. To meet the condition, we propose a linear 4-port network consisting of a quarter-wavelength transmission line and resistors. We confirm the validity and utility of the proposed system by measuring the impedance of incandescent bulbs and an RF diode rectifier.
Chulgyun PARK Jun-ichi TAKADA Kei SAKAGUCHI Takashi OHIRA
In this paper we propose a novel spatial fading simulator to evaluate the performance of an array antenna and show its spatial stochastic characteristics by computer simulation based on parameters verified by experimental data. We introduce a cavity-excited circular array (CECA) as a fading simulator that can simulate realistic mobile communication environments. To evaluate the antenna array, two stochastic characteristics are necessary. The first one is the fading phenomenon and the second is the angular spread (AS) of the incident wave. The computer simulation results with respect to fading and AS show that CECA works well as a spatial fading simulator for performance evaluation of an antenna array. We first present the basic structure, features and design methodology of CECA, and then show computer simulation results of the spatial stochastic characteristics. The results convince us that CECA is useful to evaluate performance of antenna arrays.
This paper presents a comprehensive design approach to load-independent radio frequency (RF) power amplifiers. We project the zero-voltage-switching (ZVS) and zero-voltage-derivative-switching (ZVDS) load impedances onto a Smith chart, and find that their loci exhibit geodesic arcs. We exploit a two-port reactive network to convert the geodesic locus into another geodesic. This is named geodesic-to-geodesic (G2G) impedance conversion, and the power amplifier that employs G2G conversion is called class-G2G amplifier. We comprehensively explore the possible circuit topologies, and find that there are twenty G2G networks to create class-G2G amplifiers. We also find out that the class-G2G amplifier behaves like a transformer or a gyrator converting from dc to RF. The G2G design theory is verified via a circuit simulation. We also verified the theory through an experiment employing a prototype 100 W amplifier at 6.78 MHz. We conclude that the presented design approach is quite comprehensive and useful for the future development of high-efficiency RF power amplifiers.
Qing HAN Brett HANNA Takashi OHIRA
This paper presents a technique for designing a dielectric Electronically Steerable Parasitic Array Radiator (Espar) antenna to achieve miniaturization of the conventional Espar antenna. The antenna's size is reduced by immersing the central active element in a dielectric cylinder, mounting the surrounding planar parasitic elements at the circumference of the cylinder, and decreasing the radius of the ground skirt to that of the parasitic elements. An example of a polycarbonate (εr = 2.9 + j0.006) Espar antenna operating at 2.484 GHz is optimised by using a genetic algorithm in conjunction with an FEM-based cost function. The designed antenna generates a half-power beam width of 78and a main lobe that elevates at an angle of only 5from the horizontal plane. The designed antenna is also fabricated and measured. Good agreement between the measurement and simulation results is obtained. We reduce the size of the designed Espar antenna to 1/8 the size of its conventional counterpart while achieving a 12improvement in half-power beam width.
Qing HAN Keizo INAGAKI Kyouichi IIGUSA Robert SCHLUB Takashi OHIRA
Reactive near field reflection characteristics of commercial RF absorbers are investigated to determine the minimum size of a reactive-field anechoic box necessary for measuring the reactive near field of an ESPAR antenna. The reflectivity of the absorber placed in close proximity to an antenna is inversely proportional to the distance between the antenna and the absorber. For carbon filled urethane foam tapered absorbers, we find that the backscattered reflection characteristics mainly depend on their tapered height rather than the thickness of absorber base. As a result, we show that carbon filled urethane foam pyramidal and wave surface shaped absorbers can be used to make reactive-field anechoic boxes. A prototype of a reactive-field anechoic box is presented and the distance from the absorber to the antenna is reduced to a wavelength. The prototype is verified by comparing its performance with that obtained from a large anechoic chamber.
This paper presents newly developed very small MMIC bandpass filters along with novel positive and negative feedback techniques. In order to maintain the expected Q factor without unwanted oscillations in the positive feedback loop, the unity-coupler principle is proposed to stabilize the constituent amplifier. A prototype bandpass filter is monolithically integrated in a very small area of only 0.1 mm2 on a GaAs substrate. A sharp factor as high as 5.6/1-30 dB is achieved near the frequency range of 1 GHz. The other technique presented in this paper is to achieve the bandpass function without using any positive feedback. This is negative feedback consisting of feedback elements with the unique variable transfer function of b/(1as). A variable bandpass filter based on this design concept is also fabricated in a 1.21.3 mm2 area on a GaAs substrate. It has both a varactor and varistor integrated in the circuit, resulting in an independently controllable center frequency and Q factor. It is shown experimentally that the Q factor is controllable over a remarkable range of 20 to 400 and the center frequency is broader than 100 MHz at the 1 GHz band. By cascading two of the fabricated MMIC chips, a forth-order frequency response is successfully obtained along with a 35-40 dB forward gain and an in-band gain flatness of 0.35 dB.
Tadao NAKAGAWA Hideo SUWAKI Takashi OHIRA
To reduce the phase noise of MMIC phase-locked oscillators (PLOs), we study the phase noise properties of PLOs given that the oscillator Q factor is relatively low in monolithic circuits. Such PLOs must have wide bandwidth in order to suppress monolithic oscillator noise. Therefore, to reduce MMIC PLO phase noise, the phase noise in the PLO passband has to be decreased. Noise generation by each component of the PLO, and its contribution to the output are discussed with emphasis on experimental estimation and rigorous analysis of the component phase- or baseband-noise. Based on these results, a new loop configuration is proposed for reducing phase noise in the PLO using a low Q-factor oscillator. It is demonstrated experimentally that PLOs based on the new loop exhibit 7 dB lower phase noise than conventional PLOs.
This paper theoretically revisits linear passive two-port systems from the viewpoint of power transfer. Instead of using the conventional S21 magnitude, we propose generalizing the kQ product as a figure of merit for two-port performance evaluation. We explore three examples of power transfer schemes, i.e. inductive, capacitive, and resistive channels. Starting from their voltage-current equations, the kQ formula is analytically derived for each scheme. The resultant formulas look different in appearance but are all physically consistent with ωM/R, which stems from the original definition of kQ product in a primitive transformer. After comprehensively learning from the three examples, we finally extend the theory to a black-box model that represents any kind of power transfer channel. In terms of general two-port Z-parameters, useful mathematical expressions are deduced for the optimum load, input impedance, and maximum power transfer efficiency. We also supplement the theory with helpful graphics that explain how the generalized kQ behaves as a function of the circuit parameters.
Tadao NAKAGAWA Tetsuo HIROTA Takashi OHIRA
A novel sampling comparator circuit is presented for extending the pull-in range of microwave phase-locked oscillators (PLOs). It performs both phase and frequency detection without any frequency dividers, and a GaAs MMIC prototype is developed and tested. The proposed comparator improves the pull-in range by about 10 times more than is possible with conventional sampling phase detectors.
Ranga HETTIARACHCHI Mitsuo YOKOYAMA Hideyuki UEHARA Takashi OHIRA
In this paper, performance of a novel interference cancellation technique for the single user detection in a direct-sequence code-division multiple access (DS-CDMA) system has been investigated. This new algorithm is based on the Cycle-and-Add property of PN (Pseudorandom Noise) sequences and can be applied for both synchronous and asynchronous systems. The proposed strategy provides a simple method that can delete interference signals one by one in spite of the power levels of interferences. Therefore, it is possible to overcome the near-far problem (NFP) in a successive manner without using transmit power control (TPC) techniques. The validity of the proposed procedure is corroborated by computer simulations in additive white Gaussian noise (AWGN) and frequency-nonselective fading channels. Performance results indicate that the proposed receiver outperforms the conventional receiver and, in many cases, it does so with a considerable gain.
Masami AKAIKE Takashi OHIRA Keizo INAGAKI Qing HAN
Higher-order harmonics and distortions generated by nonlinearity of capacitance-voltage characteristic of a single varactor and an anti-series-connected varactor pair are analyzed and compared. The effect of linear and parabolic terms of nonlinearity to harmonics outputs and distortions is discussed. It is shown that an anti-series-connected varactor pair has a completely suppressed linear term and reduced parabolic term. The advantage of an anti-series-connected varactor pair is theoretically explained.
This paper presents Q factor analysis for FET oscillators employing distributed-constant elements. We replace the inductor of a lumped constant Colpitts circuit by a shorted microstrip transmission line for high frequency applications. Involving the FET's transconductance and the transmission line's loss due to both conducting metal and dielectric substrate, we deduce the Q factor formula for the entire circuit in the steady oscillation state. We compared the computed results from the oscillator employing an uniform shorted microstrip line with that of the original LC oscillator. For obtaining even higher Q factor, we modify the shape of transmission line into nonuniform, i.e., step-, tapered-, and partially-tapered stubs. Non-uniformity causes some complexity in the impedance analysis. We exploit a piecewise uniform approximation for tapered part of the microstrip stub, and then involve the asymptotic expressions obtained from both stub's impedance and its frequency derivatives into the active Q factor formula. Applying these formulations, we calculate out the value of capacitance for tuning, the necessary FET's transconductance and achievable active Q factor, and then finally explore oscillator performances with a microstrip stub in different shapes and sizes.
Qing HAN Keizo INAGAKI Takashi OHIRA
Nonlinear distortions in an anti-series varactor pair (ASVP) are analyzed by a perturbation method. To the authors' knowledge, this paper presents the first derivation of an analytical expression that explicitly shows intermodulation and harmonic distortions of the ASVP. In addition to canceling the expected even-order distortion, the third-order distortion can be suppressed simultaneously when a certain condition is satisfied. We also find that the second- and third-order distortions can be greatly suppressed without dependence on dc bias voltage if the varactors in the ASVP have an ideal abrupt p-n junction. These theoretical predictions are verified by measuring the second- and third-order harmonic distortions of an ASVP. The experimental results show that the second-order harmonic distortion is suppressed by approximately 20 dB. The third-order harmonic distortion is suppressed to the same extent in the theoretically predicted dc bias voltage range.