1-2hit |
Yoshinori UZAWA Matthias KROUG Takafumi KOJIMA Masanori TAKEDA Kazumasa MAKISE Shohei EZAKI Wenlei SHAN Akihira MIYACHI Yasunori FUJII Hirotaka TERAI
This paper describes the development of superconductor-insulator-superconductor (SIS) mixers for the Atacama Large Millimeter/submillimeter Array (ALMA) from the device point of view. During the construction phase of ALMA, the National Astronomical Observatory of Japan (NAOJ) successfully fabricated SIS mixers to meet the stringent ALMA noise temperature requirements of less than 230 K (5 times the quantum noise) for Band 10 (787-950 GHz) in collaboration with the National Institute of Information and Communications Technology. Band 10 covers the highest frequency band of ALMA and is recognized as the most difficult band in terms of superconducting technology. After the construction, the NAOJ began development studies for ALMA enhancement such as wideband and multibeam SIS mixers according to top-level science requirements, which are also presented.
Mizuki IKEYA Takashi NOGUCHI Takafumi KOJIMA Takeshi SAKAI
In this paper, we describe the fabrication of low leakage Superconductor/Insulator/Superconductor (SIS) junctions with a Nb/Al/AlOx/Al/Nb structure. In other words, an extra Al layer was added onto the top of the insulator in a conventional Nb/Al/AlOx/Nb junction. We measured the current and voltage (IV) characteristics of both the Nb/Al/AlOx/Al/Nb and Nb/Al/AlOx/Nb junctions at the temperature of liquid helium, and found that the sub-gap leakage current in the Nb/Al/AlOx/Al/Nb junctions was much lower than that of the Nb/Al/AlOx/Nb junctions. Our analysis of the IV characteristics indicates that the quality of the AlOx insulator used in the Nb/Al/AlOx/Al/Nb junction was close to ideal, while the insulator used in the Nb/Al/AlOx/Nb junction had possible defects. According to the scanning transmission electron microscope (STEM) images and energy-dispersive X-ray spectroscopy (EDX) analyses, it was evident that the Nb atoms diffused into the bottom electrode of the Nb/Al/AlOx/Nb junction, while a smaller number diffused into the bottom electrode of the Nb/Al/AlOx/Al/Nb junction. Therefore, we conclude that the extra Al layer effectively acted as a buffer layer that prevented the Nb atoms from diffusing into the insulator and bottom electrode. The presence of the top Al layer is expected to favorably improve the quality of junctions with a very high current density, and support the extension of the RF and IF bandwidths of SIS mixers.