1-2hit |
Takako MIZOGUCHI Akihiko KANDORI Keiji ENPUKU
Simple and quick tests at medical clinics have become increasingly important. Magnetic sensing techniques have been developed to detect biomarkers using magnetic nanoparticles in liquid-phase assays. We developed a biomarker assay that involves using an alternating current (AC) susceptibility measurement system that uses functional magnetic particles and magnetic sensing technology. We also developed compact biomarker measuring equipment to enable quick testing. Our assay is a one-step homogeneous assay that involves simply mixing a sample with a reagent, shortening testing time and simplifying processing. Using our compact measuring equipment, which includes anisotropic magneto resistance (AMR) sensors, we conducted high-sensitivity measurements of extremely small amounts of two biomarkers (C-reactive protein, CRP and α-Fetoprotein, AFP) used for diagnosing arteriosclerosis and malignant tumors. The results indicate that an extremely small amount of CRP and AFP could be detected within 15 min, which demonstrated the possibility of a simple and quick high-sensitivity immunoassay that involves using an AC-susceptibility measurement system.
Keiji ENPUKU Yuki SUGIMOTO Yuya TAMAI Akira TSUKAMOTO Takako MIZOGUCHI Akihiko KANDORI Naoki USUKI Hisao KANZAKI Kohji YOSHINAGA Yoshinori SUGIURA Hiroyuki KUMA Naotaka HAMASAKI
Liquid-phase detection of biological targets utilizing magnetic marker and superconducting quantum interference device (SQUID) magnetometer is shown. In this method, magnetic markers are coupled to the biological targets, and the binding reaction between them is detected by measuring the magnetic signal from the bound markers. Detection can be done in the liquid phase, i.e., we can detect only the bound markers even in the presence of unbound (free) markers. Since the detection principle is based on the different magnetic properties between the free and bound markers, we clarified the Brownian relaxation of the free markers and the Neel relaxation of the bound markers. Usefulness of the present method is demonstrated from the detection of the biological targets, such as biotin-coated polymer beads, IgE and Candida albicans.