1-6hit |
Shin'ichiro NAKATA Masaaki YOSHIDA Takekazu ISHIDA
It is of considerable interest to study the vortex behavior of a multiply connected superconductor for potential applications of vortex devices. Our sample is made of a type-I superconductor Pb and a capillary plate. The nominal sizes are 1-µm in hole diameter and 1.8-µm in lattice pitch. The microholes form triangular lattice while a superconducting network consists of a honeycomb lattice. When each hole accommodates a single vortex 0, an applied magnetic field becomes a nominal matching field (7.83 G). We measure the magnetization curve of sample by means of a SQUID (superconducting quantum interference device) magnetometer in the accurate small fields on the order of Gauss. We find a sharp magnetization peak at 8.2 G at temperatures near the critical temperature Tc.
Ali BOZBEY Yuma KITA Kyohei KAMIYA Misaki KOZAKA Masamitsu TANAKA Takekazu ISHIDA Akira FUJIMAKI
One of the fundamental problems in many-pixel detectors implemented in cryogenics environments is the number of bias and read-out wires. If one targets a megapixel range detector, number of wires should be significantly reduced. One possibility is that the detectors are serially connected and biased by using only one line and read-out is accomplished by on-chip circuitry. In addition to the number of pixels, the detectors should have fast response times, low dead times, high sensitivities, low inter-pixel crosstalk and ability to respond to simultaneous irradiations to individual pixels for practical purposes. We have developed an equivalent circuit model for a serially connected superconducting strip line detector (SSLD) array together with the read-out electronics. In the model we take into account the capacitive effects due to the ground plane under the detector, effects of the shunt resistors fabricated under the SSLD layer, low pass filters placed between the individual pixels that enable individual operation of each pixel and series resistors that prevents the DC bias current flowing to the read-out electronics as well as adjust the time constants of the inductive SSLD loop. We explain the results of investigation of the following parameters: Crosstalk between the neighbor pixels, response to simultaneous irradiation, dead times, L/R time constants, low pass filters, and integration with the SFQ front-end circuit. Based on the simulation results, we show that SSLDs are promising devices for detecting a wide range of incident radiation such as neurons, X-rays and THz waves in many-pixel configurations.
Akira FUJIMAKI Isao NAKANISHI Shigeyuki MIYAJIMA Kohei ARAI Yukio AKITA Takekazu ISHIDA
We propose a neutron diffractometer system based on MgB2 thin film detectors and an SFQ signal processor. Small dimensions of MgB2 thin film detectors and high processing capability of the single flux quantum (SFQ) circuits enable us to handle several thousand or more detectors in a cryocooler, leading to a very compact system. In addition, the system can provide many diffraction patterns for different kinetic energies simultaneously. Kinetic energy is determined for individual neutrons by means of the time-of-flight method by using SFQ time-to-digital converters (TDCs). Digital outputs of the TDCs are multiplexed in time domain and sent to room-temperature electronics with reduced number of cables. A dual-input SFQ signal processor including TDCs and a multiplexer has been successfully demonstrated with a time resolution of 20 ns and power consumption of 400 µW. These values show high feasibility of the neutron diffraction system proposed here.
Nariaki YAMAMOTO Naoki KAGAWA Kentaro KITAMURA Daisuke TAKIGAWA Takekazu ISHIDA
We have designed a torque magnetometer using a 60-kG split-type superconducting magnet. A balance torque compensates the torque acting on a sample in the magnetic field. The feedback circuit for a sample direction consists of an optical position sensor, a moving coil, and a PID controller. We measured the coil current to know a sample torque. The whole torque machinery is directly rotated by a stepping motor of angular resolution 0.0036. An advantage of the torque apparatus is a wide dynamic range up to 1000 dyncm. The sample temperature can be controlled between 4 K and 300 K.
Superconducting detectors have been shown to be superior to other techniques in some applications. However, superconducting devices have not been used for detecting neutrons often in the past decades. We have been developing various superconducting neutron detectors. In this paper, we review our attempts to measure neutrons using superconducting stripline detectors with DC bias currents. These include attempts with a MgB2-based detector and a Nb-based detector with a 10B converter.
Mitsuyuki TSUJI Nariaki YAMAMOTO Shin'ichiro NAKATA Shuichi KAWAMATA Takekazu ISHIDA Satoru OKAYASU Kiichi HOJOU
We have developed a new torque magnetometer on the basis of a 4-K refrigerator. The system temperature can be lowered down to 1.5 K by pumping liquefied helium from a top loading sample space. A piezoresistor bridge on a Si cantilever is used to detect torque acting on a sample. A transverse magnetic field is supplied by a variable-field permanent magnet up to 10 kG. We find that a sensitivity of our torque magnetometer is Δ τ 10-10 Nm.