1-2hit |
Akira FUJIMAKI Isao NAKANISHI Shigeyuki MIYAJIMA Kohei ARAI Yukio AKITA Takekazu ISHIDA
We propose a neutron diffractometer system based on MgB2 thin film detectors and an SFQ signal processor. Small dimensions of MgB2 thin film detectors and high processing capability of the single flux quantum (SFQ) circuits enable us to handle several thousand or more detectors in a cryocooler, leading to a very compact system. In addition, the system can provide many diffraction patterns for different kinetic energies simultaneously. Kinetic energy is determined for individual neutrons by means of the time-of-flight method by using SFQ time-to-digital converters (TDCs). Digital outputs of the TDCs are multiplexed in time domain and sent to room-temperature electronics with reduced number of cables. A dual-input SFQ signal processor including TDCs and a multiplexer has been successfully demonstrated with a time resolution of 20 ns and power consumption of 400 µW. These values show high feasibility of the neutron diffraction system proposed here.
Shuichi NAGASAWA Masamitsu TANAKA Naoki TAKEUCHI Yuki YAMANASHI Shigeyuki MIYAJIMA Fumihiro CHINA Taiki YAMAE Koki YAMAZAKI Yuta SOMEI Naonori SEGA Yoshinao MIZUGAKI Hiroaki MYOREN Hirotaka TERAI Mutsuo HIDAKA Nobuyuki YOSHIKAWA Akira FUJIMAKI
We developed a Nb 4-layer process for fabricating superconducting integrated circuits that involves using caldera planarization to increase the flexibility and reliability of the fabrication process. We call this process the planarized high-speed standard process (PHSTP). Planarization enables us to flexibly adjust most of the Nb and SiO2 film thicknesses; we can select reduced film thicknesses to obtain larger mutual coupling depending on the application. It also reduces the risk of intra-layer shorts due to etching residues at the step-edge regions. We describe the detailed process flows of the planarization for the Josephson junction layer and the evaluation of devices fabricated with PHSTP. The results indicated no short defects or degradation in junction characteristics and good agreement between designed and measured inductances and resistances. We also developed single-flux-quantum (SFQ) and adiabatic quantum-flux-parametron (AQFP) logic cell libraries and tested circuits fabricated with PHSTP. We found that the designed circuits operated correctly. The SFQ shift-registers fabricated using PHSTP showed a high yield. Numerical simulation results indicate that the AQFP gates with increased mutual coupling by the planarized layer structure increase the maximum interconnect length between gates.