1-2hit |
Shigeya TANAKA Takashi HOTTA Fumio MURABAYASHI Hiromichi YAMADA Shoji YOSHIDA Kotaro SHIMAMURA Koyo KATSURA Tadaaki BANDOH Koichi IKEDA Kenji MATSUBARA Kouji SAITOU Tetsuo NAKANO Teruhisa SHIMIZU Ryuichi SATOMURA
A superscalar RISC processor contains 2.8 million transistors in a die size of 16.2 mm16.5 mm, and utilizes 3.3 V/0.5 µm BiCMOS technology. In order to take advantage of superscalar performance without incurring penalties from a slower clock or a longer pipeline, a tag bit is implemented in the instruction cache to indicate dependency between two instructions. A performance gain of up to 37% is obtained with only a 3.5% area overhead from our superscalar design.
Naoki KATO Yohei AKITA Mitsuru HIRAKI Takeo YAMASHITA Teruhisa SHIMIZU Fuyuhiko MAKI Kazuo YANO
Random modulation refers to the changing of the MOSFET threshold voltage cell by cell. This paper claims it is essential in sub-2-V CMOS design because it reduces the sub-threshold leakage current even in the active and sleep modes as well as in the stand-by mode. We found that a gradated modulation scheme, which gradually changes the ratio of low- Vth cells according to the path-delay, is the best approach. To achieve the minimal leakage current, the way of determining the optimum pair of threshold voltages is also described. Experimental results for microprocessor show that gradated modulation reduces sub-threshold leakage current by 75% to 90% compared to conventional single-low-threshold voltage design without degrading the performance of the circuits.