1-11hit |
Teruo ONISHI Ryo ISHIDO Takuya TAKIMOTO Kazuyuki SAITO Shinji UEBAYASHI Masaharu TAKAHASHI Koichi ITO
In this paper, the electrical constants of a biological tissue-equivalent agar-based solid phantom from 3.0 to 6.0 GHz are described. The developed phantom can reproduce the electrical constants of biological tissues from 3.0 to 6.0 GHz, and it is not necessary to change the phantom for each frequency band in the range of 3.0 to 6.0 GHz during the measurements. Moreover, adjustments to the dielectric constants of the phantom at 3.0, 3.8, 5.2, and 5.8 GHz are presented. The constants of this phantom can be adjusted mainly by using polyethylene powder and sodium chloride. The phantom can be used to evaluate the Specific Absorption Rate (SAR) as well as the antenna characteristics in the range of 3.0 to 6.0 GHz. Furthermore, the effect of the electrical constants of the phantom on the SAR is investigated. The investigation of SAR measurements is performed on the phantom at 5.2 GHz using the thermographic method. Calculations using the FD-TD method and the finite difference method based on the heat conduction equation are carried out in order to evaluate the thermal diffusion in the measurements using the thermographic method. The measured and calculated results are in good agreement. There is evidence that the thermal diffusion influences the SAR estimation at 5.2 GHz more than in a lower frequency range even though this method basically does not depend on the frequency.
Hidetoshi EBARA Kensuke TANI Teruo ONISHI Shinji UEBAYASHI Osamu HASHIMOTO
This paper proposes a method for estimating the complex permittivity of a small quantity of a sample such as a biological membrane. The feature of this method is that a material with an unknown complex permittivity is mixed with a material with a known complex permittivity in a number of volume ratios. The unknown complex permittivity is estimated by measuring the effective permittivity of the mixtures and by using the mixing formula, which is applied to the composite material. The validity of this estimation method is evaluated using a phospholipid, which is the primary constituent of a biological membrane, in the frequency range from 0.8 GHz to 6 GHz. We confirm that the measured effective permittivity of the phospholipid mixtures, which comprise the phospholipid and Ringer's solution in a number of volume ratios, corresponds to that of the Lichtenecker formula. Additionally, by preparing a number of samples with varying volume ratios the estimation error can be decreased. This estimation method is considered to be effective in the measurement of the complex permittivity for a biological membrane.
Satoshi ISHIHARA Teruo ONISHI Akimasa HIRATA
A method for measuring the magnetic field strength for human exposure assessment closer than 20cm to wireless power transfer (WPT) systems for information household appliances is investigated based on numerical simulations and measurements at 100kHz and 6.78MHz. Four types of magnetic sources are considered: a simple 1-turn coil and three types of coils simulating actual WPT systems. A magnetic sensor whose cross sectional area is 100cm2 as prescribed in International Electrotechnical Commission 62233 is used. Simulation results show that the magnetic field strength detected by the magnetic sensor is affected by its placement angle. The maximum coefficient of variation (CV) is 27.2% when the magnetic source and the sensor are in contact. The reason for this deviation is attributable to the localization of the magnetic field distribution around the magnetic source. The coupling effect between the magnetic source and the sensor is negligible. Therefore, the sensor placement angle is an essential factor in magnetic field measurements. The CV due to the sensor placement angle is reduced from 21% to 4% if the area of the sensor coil is reduced from 100 to 0.75cm2 at 6.78MHz. However, the sensitivity of the sensor coil is decreased by 42.5dB. If measurement uncertainty that considers the deviation in the magnetic field strength due to the sensor placement angle is large, the measured magnetic field strength should be corrected by the uncertainty. If the magnetic field distribution around the magnetic source is known, conservative exposure assessments can be achieved by placing the magnetic sensor in locations at which the spatial averaged magnetic field strengths perpendicular to the magnetic sensor coils become maximum.
Hidetoshi EBARA Daisuke MIKI Teruo ONISHI Shinji UEBAYASHI Osamu HASHIMOTO
This paper proposes a non-destructive dielectric measurement method for a solid lossy dielectric material with sufficiently large dimensions compared to the wavelength. The proposed non-destructive measurement method employs an open-ended waveguide infilled with a low-loss dielectric material at the end of the waveguide. A numerical model of the open-ended waveguide attached to the surface of a solid dielectric material is simulated using the FDTD method. The reflection coefficient is calculated while the complex permittivity of the solid lossy dielectric material is varied. A permittivity estimation chart representing the relationship between the complex permittivity and the reflection coefficient is derived at 2 GHz. The measured reflection coefficient is plotted on the permittivity estimation chart. The chart indicates that the reflection coefficient varies drastically according to the variation in the complex permittivity of the solid dielectric material if a low-loss dielectric material is used. As a result, it became possible to estimate the complex permittivity of the solid lossy dielectric material by measuring the reflective coefficient. The estimated complex permittivity using the proposed method is comparable to the measured complex permittivity using the S-parameter method employing a coaxial line.
Teruo ONISHI Takahiro IYAMA Lira HAMADA Soichi WATANABE Akimasa HIRATA
This paper investigates the relationship between averaged SAR (Specific Absorption Rate) over 10 g mass and temperature elevation in Japanese numerical anatomical models when devices are mounted on the body. Simplifying the radiation source as a half-wavelength dipole, the generated electrical field and SAR are calculated using the FDTD (Finite-Difference Time-Domain) method. Then the bio-heat equation is solved to obtain the temperature elevation due to the SAR derived using the FDTD method as heat source. Frequencies used in the study are 900 MHz and 1950 MHz, which are used for mobile phones. In addition, 3500 MHz is considered because this frequency is reserved for IMT-Advanced (International Mobile Telecommunication-Advanced System). Computational results obtained herein show that the 10 g-average SAR and the temperature elevation are not proportional to frequency. In addition, it is clear that those at 3500 MHz are lower than that at 1950 MHz even though the frequency is higher. It is the point to be stressed here is that good correlation between the 10 g-average SAR and the temperature elevation is observed even for the body-worn device.
Yijian GONG Manuel MURBACH Teruo ONISHI Myles CAPSTICK Toshio NOJIMA Niels KUSTER
The objective of this paper is to extend the dosimetric assessment of 35mm Petri dishes exposed in the standing wave of R18 waveguides operated at 1950MHz for a medium-oil two-layer configuration for cells in monolayer and suspension. The culture medium inside the Petri dish is covered by oil that prevents evaporation and seals the cells below in the medium. The exposure of the cells was analyzed for one suspension-medium configuration, two different suspension-multilayer configurations, and one monolayer-multilayer configuration. The numerical dosimetry is verified by dosimetric temperature measurements. The non-uniformity of the specific absorption rate (SAR) distribution is 30% for monolayer, and 59-75% for suspension configurations. The latter should be taken into account when biological experiment is performed.
Takahiro IYAMA Katsuki KIMINAMI Teruo ONISHI
A prototype of a three-axis electro-optic (EO) probe is developed that has the linearity of approximately 0.5 dB in the specific absorption rate (SAR) range of 0.01 to 100 W/kg and the directivities are eight-shaped with cross-axis sensitivity isolation of greater than 30 dB. It is confirmed that electric fields and SAR distributions can be measured using a three-axis EO probe.
This paper proposes and verifies a specific absorption rate (SAR) measurement procedure for multi-antenna transmitters that requires measurement of two-dimensional electric field distributions for the number of antennas and calculation in order to obtain the three-dimensional SAR distributions for arbitrary weighting coefficients of the antennas prior to determining the average SAR. The proposed procedure is verified based on Finite-Difference Time-Domain (FDTD) calculation and measurement using electro-optic (EO) probes. For two reference dipoles, the differences in the 10 g SAR obtained based on the proposed procedure compared numerically and experimentally to that based on the original calculated three-dimensional SAR distribution are at most 4.8% and 3.6%, respectively, at 1950 MHz. At 3500 MHz, this difference is at most 5.2% in the numerical verification.
The specific absorption rate (SAR) measurement procedure for wireless communication devices used in close proximity to the human body other than the ear was standardized by the International Electrotechnical Commission (IEC). This procedure is applicable to SAR measurement of data communication terminals that are used with host devices. Laptop PCs are assumed as host devices in this study. First, numerical modeling of laptop PCs and the validity of computations are verified with corresponding measurements. Next, mass averaged SARs are calculated dependent on the dimensions of the laptop PCs and the position of the terminals. The results show that the ratio of the maximum to minimum SARs is at most 2.0 for USB dongle and card-type terminals at 1950 MHz and 835 MHz.
Daisuke FUNAHASHI Takahiro ITO Akimasa HIRATA Takahiro IYAMA Teruo ONISHI
This study discusses an area-averaged incident power density to estimate surface temperature elevation from patch antenna arrays with 4 and 9 elements at the frequencies above 10 GHz. We computationally demonstrate that a smaller averaging area (1 cm2) of power density should be considered at the frequency of 30 GHz or higher compared with that at lower frequencies (4 cm2).
This paper presents the results of an investigation on the effect of a thin low-dielectric material (phantom shell) on measuring the Specific Absorption Rate (SAR) in the frequency range of 3 to 6 GHz. The International Electrotechnical Commission (IEC) has started to develop a SAR measurement procedure in order to cover such frequencies. In the procedure, the SAR is measured in a liquid phantom, which is a shell filled with tissue-equivalent liquid. Although the shell is thin and has low-dielectric properties, the influence of the phantom shell is thought to increase at higher frequencies. Therefore, an investigation using the transmission line model and the Finite-Difference Time-Domain (FD-TD) method was conducted. To verify the FD-TD results, measurements were also carried out. The calculation results using the FD-TD method agree well with the measurement results. If the frequency is higher, the SAR is affected by the shell even though the shell is thinner and has much lower dielectric properties than those of the tissue-equivalent liquid. Specifically, the SAR with the shell is approximately 1.3 times higher than without the shell at 5.2 GHz for the maximum case. The deviations in the loss and the thickness for the shell do not affect the SAR more than the relative permittivity.