1-2hit |
Shunsuke OKURA Tetsuro OKURA Toru IDO Kenji TANIGUCHI
A reference voltage buffer for a multibit/stage pipelined ADC is described, where a settling boost technique is used to improve the settling response of the pipelined stages. A 12 bit 18 MHz pipelined ADC with the buffer is designed and simulated based on a 0.35 µm CMOS process. According to simulation results, the power consumed by the reference voltage buffer is reduced by 33% compared to that without the settling boost technique.
Shunsuke OKURA Tetsuro OKURA Bogoda A. INDIKA U.K. Kenji TANIGUCHI
This paper describes the design of a random access memory (RAM) bank with a 0.35-µm CMOS process for column-parallel analog/digital converters (ADC) utilized in CMOS imagers. A dynamic latch is utilized that expends neither input DC nor drain current during the monitoring phase. Accuracy analysis of analog/digital conversion error in the RAM bank is discussed to ensure low power consumption of a counter buffer circuit. Moreover, the counter buffer utilizes a combination of NMOS and CMOS buffers to reduce power consumption. Total power consumption of a 10-bit 800-column 40 MHz RAM bank is 2.9 mA for use in an imager.