Author Search Result

[Author] Toshihiko NISHIMURA(35hit)

1-20hit(35hit)

  • Space Domain Multistage Interference Canceller for SDMA

    Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  Yoshiharu DOI  Jun KITAKADO  

     
    PAPER

      Vol:
    E84-B No:3
      Page(s):
    377-382

    It is difficult for an adaptive array to reduce interference signals efficiently from received signals when the interference signals and desired signal are closely located. This is a problem for a spatial division multiple access (SDMA) system using the multibeam adaptive array as a multiuser detector. In this paper, we propose a space domain multistage interference canceller (SD-MIC) for the SDMA system. Its performance is evaluated by computer simulations, assuming Japanese personal handy phone system (PHS) uplink environments. The results show remarkable improvement in high spatial correlation situations.

  • Radio Techniques Incorporating Sparse Modeling Open Access

    Toshihiko NISHIMURA  Yasutaka OGAWA  Takeo OHGANE  Junichiro HAGIWARA  

     
    INVITED SURVEY PAPER-Digital Signal Processing

      Pubricized:
    2020/09/01
      Vol:
    E104-A No:3
      Page(s):
    591-603

    Sparse modeling is one of the most active research areas in engineering and science. The technique provides solutions from far fewer samples exploiting sparsity, that is, the majority of the data are zero. This paper reviews sparse modeling in radio techniques. The first half of this paper introduces direction-of-arrival (DOA) estimation from signals received by multiple antennas. The estimation is carried out using compressed sensing, an effective tool for the sparse modeling, which produces solutions to an underdetermined linear system with a sparse regularization term. The DOA estimation performance is compared among three compressed sensing algorithms. The second half reviews channel state information (CSI) acquisitions in multiple-input multiple-output (MIMO) systems. In time-varying environments, CSI estimated with pilot symbols may be outdated at the actual transmission time. We describe CSI prediction based on sparse DOA estimation, and show excellent precoding performance when using the CSI prediction. The other topic in the second half is sparse Bayesian learning (SBL)-based channel estimation. A base station (BS) has many antennas in a massive MIMO system. A major obstacle for using the massive MIMO system in frequency-division duplex mode is an overhead for downlink CSI acquisition because we need to send many pilot symbols from the BS and to get the feedback from user equipment. An SBL-based channel estimation method can mitigate this issue. In this paper, we describe the outline of the method, and show that the technique can reduce the downlink pilot symbols.

  • Subblock Processing for Frequency-Domain Turbo Equalization under Fast Fading Environments

    Keiichi KAMBARA  Hiroshi NISHIMOTO  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1466-1474

    Frequency-domain equalization (FDE) has been studied for suppressing inter-symbol interference (ISI) due to frequency selective fading in single carrier systems. When a high-mobility terminal is assumed in the system, channel transition within an FDE block cannot be ignored. The ISI reduction performance of FDE degrades since the cyclicity of the channel matrix is lost. To solve this problem, a method of dividing the received data block into multiple subblocks has been proposed, where pseudo cyclic prefix (CP) processing is introduced to realize periodicity in each subblock. In this method, the performance is degraded by the inherently-inaccurate pseudo CP. In this paper, we study the application of frequency-domain turbo equalization (FDTE) to subblock processing for improving the accuracy of pseudo CP. The simulation results show that FDTE with subblock processing yields remarkable performance improvements.

  • Sub-Terahertz MIMO Spatial Multiplexing in Indoor Propagation Environments Open Access

    Yasutaka OGAWA  Taichi UTSUNO  Toshihiko NISHIMURA  Takeo OHGANE  Takanori SATO  

     
    INVITED PAPER

      Pubricized:
    2022/04/18
      Vol:
    E105-B No:10
      Page(s):
    1130-1138

    A sub-Terahertz band is envisioned to play a great role in 6G to achieve extreme high data-rate communication. In addition to very wide band transmission, we need spatial multiplexing using a hybrid MIMO system. A recently presented paper, however, reveals that the number of observed multipath components in a sub-Terahertz band is very few in indoor environments. A channel with few multipath components is called sparse. The number of layers (streams), i.e. multiplexing gain in a MIMO system does not exceed the number of multipaths. The sparsity may restrict the spatial multiplexing gain of sub-Terahertz systems, and the poor multiplexing gain may limit the data rate of communication systems. This paper describes fundamental considerations on sub-Terahertz MIMO spatial multiplexing in indoor environments. We examined how we should steer analog beams to multipath components to achieve higher channel capacity. Furthermore, for different beam allocation schemes, we investigated eigenvalue distributions of a channel Gram matrix, power allocation to each layer, and correlations between analog beams. Through simulation results, we have revealed that the analog beams should be steered to all the multipath components to lower correlations and to achieve higher channel capacity.

  • Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Heedong CHOI  Yasutaka OGAWA  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:7
      Page(s):
    2377-2385

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  • Performance Evaluation of MIMO-UWB Systems Using Measured Propagation Data and Proposal of Timing Control Scheme in LOS Environments

    Masaki TAKANASHI  Toshihiko NISHIMURA  Yasutaka OGAWA  Takeo OHGANE  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:8
      Page(s):
    2698-2707

    Ultrawide-band impulse radio (UWB-IR) technology and multiple-input multiple-output (MIMO) systems have attracted interest regarding their use in next-generation high-speed radio communication. We have studied the use of MIMO ultrawide-band (MIMO-UWB) systems to enable higher-speed radio communication. We used frequency-domain equalization based on the minimum mean square error criterion (MMSE-FDE) to reduce intersymbol interference (ISI) and co-channel interference (CCI) in MIMO-UWB systems. Because UWB systems are expected to be used for short-range wireless communication, MIMO-UWB systems will usually operate in line-of-sight (LOS) environments and direct waves will be received at the receiver side. Direct waves have high power and cause high correlations between antennas in such environments. Thus, it is thought that direct waves will adversely affect the performance of spatial filtering and equalization techniques used to enhance signal detection. To examine the feasibility of MIMO-UWB systems, we conducted MIMO-UWB system propagation measurements in LOS environments. From the measurements, we found that the arrival time of direct waves from different transmitting antennas depends on the MIMO configuration. Because we can obtain high power from the direct waves, direct wave reception is critical for maximizing transmission performance. In this paper, we present our measurement results, and propose a way to improve performance using a method of transmit (Tx) and receive (Rx) timing control. We evaluate the bit error rate (BER) performance for this form of timing control using measured channel data.

  • A Throughput Evaluation of an Over-Distributed Antenna System with Limited Pilot Resources

    Yuki NAKANISHI  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  Yusuke OHWATARI  Yoshihisa KISHIYAMA  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1465-1473

    A distributed antenna system, where the antennas of a base station are spatially distributed throughout the cell, can achieve better throughput at the cell edge than a centralized antenna system. On the other hand, the peak throughput degrades in general because each remote antenna unit has only a few antennas. To achieve both high peak and cell-edge throughputs, we need to increase the total number of antennas. However, this is not easy due to the pilot resource limitation when we use frequency division duplexing. In this paper, we propose using more antennas than pilot resources. The number mismatch between antennas and signals is solved by using a connection matrix. Here, we test two types of connection matrix: signal-distributing and signal-switching. Simulation results show that the sum throughput is improved by increasing the number of antenna elements per remote antenna unit under a constraint on the same number of pilot resources.

  • Applications of Space Division Multiplexing and Those Performance in a MIMO Channel

    Takeo OHGANE  Toshihiko NISHIMURA  Yasutaka OGAWA  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1843-1851

    Currently, space division multiplexing (SDM), where individual data streams are transmitted from different antennas simultaneously, is expected to be a promising technology for achieving a high data rate within a limited frequency band in a multiple-input multiple-output channel. In this paper, transmitter and receiver architectures of SDM applications are described, and performance improvement with the increase of data streams is shown referring to results of computer simulations. In addition, channel coded systems are also evaluated.

  • Channel Estimation and Signal Detection for Space Division Multiplexing in a MIMO-OFDM System

    Yasutaka OGAWA  Keisuke NISHIO  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-MIMO

      Vol:
    E88-B No:1
      Page(s):
    10-18

    We consider space division multiplexing in a MIMO-OFDM system for high data rate transmission. Channel estimation is very important for suppressing interference and demultiplexing signals. In a wireless LAN system such as IEEE 802.11a, only a few training symbols are inserted in each subcarrier. First, we propose a channel estimation method for a MIMO-OFDM system with two training symbols per subcarrier. The basic idea is to estimate the time-domain channel responses between the transmit and receive antennas. The array response vectors for each subcarrier are calculated by applying a fast Fourier transform to them. We then can obtain the adaptive weights to cancel the interference. We show that employing training symbols having a lower condition number of the matrix used for the channel estimation improves the estimation accuracy. Furthermore, we show the bit error rate for several signal detection schemes using the above estimated channel. It is shown that an ordered successive detection based on an MMSE criterion has excellent performance, that is, it can achieve higher-speed transmissions with a lower transmit power.

  • Precise DOA Estimation Using SAGE Algorithm with a Cylindrical Array

    Masaki TAKANASHI  Toshihiko NISHIMURA  Yasutaka OGAWA  Takeo OHGANE  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:11
      Page(s):
    3784-3787

    A uniform circular array (UCA) is a well-known array configuration which can accomplish estimation of 360 field of view with identical accuracy. However, a UCA cannot estimate coherent signals because we cannot apply the SSP owing to the structure of UCA. Although a variety of studies on UCA in coherent multipath environments have been done, it is impossible to estimate the DOA of coherent signals with different incident polar angles. Then, we have proposed Root-MUSIC algorithm with a cylindrical array. However, the estimation performance is degraded when incident signals arrive with close polar angles. To solve this problem, in the letter, we propose to use SAGE algorithm with a cylindrical array. Here, we adopt a CLA Root-MUSIC for the initial estimation and decompose two-dimensional search to double one-dimensional search to reduce the calculation load. The results show that the proposal achieves high resolution with low complexity.

  • Studies on an Iterative Frequency Domain Channel Estimation Technique for MIMO-UWB Communications

    Masaki TAKANASHI  Yasutaka OGAWA  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1084-1094

    MIMO (Multiple-Input Multiple-Output) technologies have attracted much interest for high-rate and high-capacity wireless communications. MIMO technologies under frequency-selective fading environments (wideband MIMO technologies) have also been studied. A wideband MIMO system is affected by ISI (Inter Symbol Interference) and CCI (Co-Channel Interference). Hence, we need a MIMO signal detection technique that simultaneously suppresses ISI and CCI. The OFDM system and SC-FDE (Single Carrier-Frequency Domain Equalization) techniques are often used for suppressing ISI. By employing these techniques with the ZF (Zero Forcing) or the MMSE (Minimum Mean Square Error) spatial filtering technique, we can cancel both ISI and CCI. To use ZF or MMSE, we need channel state information for calculating the receive weights. Although an LS (Least Square) channel estimation technique has been proposed for MIMO-OFDM systems, it needs a large estimation matrix at the receiver side to obtain sufficient estimation performance in heavy multipath environments. However, the use of a large matrix increases computational complexity and the circuit size. We use frequency domain channel estimation to solve these problems and propose an iterative method for achieving better estimation performance. In this paper, we assume the use of a MIMO-UWB system that employs a UWB-IR (Ultra-Wideband Impulse Radio) scheme with the FDE technique as the wideband wireless transmission scheme for heavy multipath environments, and we evaluate the iterative frequency domain channel estimation through computer simulations and computational complexity calculations.

  • Performance of MIMO E-SDM Systems Using Channel Prediction in Actual Time-Varying Indoor Fading Environments

    Huu Phu BUI  Hiroshi NISHIMOTO  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    PAPER-Smart Antennas & MIMO

      Vol:
    E91-B No:6
      Page(s):
    1713-1723

    In time-varying fading environments, the performance of multiple-input multiple-output (MIMO) systems applying an eigenbeam-space division multiplexing (E-SDM) technique may be degraded due to a channel change during the time interval between the transmit weight matrix determination and the actual data transmission. To compensate for the channel change, we have proposed some channel prediction methods. Simulation results based on computer-generated channel data showed that better performance can be obtained when using the prediction methods in Rayleigh fading environments assuming the Jakes model with rich scatterers. However, actual MIMO systems may be used in line-of-sight (LOS) environments, and even in a non-LOS case, scatterers may not be uniformly distributed around a receiver and/or a transmitter. In addition, mutual coupling between antennas at both the transmitter and the receiver cannot be ignored as it affects the system performance in actual implementation. We conducted MIMO channel measurement campaigns at a 5.2 GHz frequency band to evaluate the channel prediction techniques. In this paper, we present the experiment and simulation results using the measured channel data. The results show that robust bit-error rate performance is obtained when using the channel prediction methods and that the methods can be used in both Rayleigh and Rician fading environments, and do not need to know the maximum Doppler frequency.

  • MIMO E-SDM Transmission Performance in an Actual Indoor Environment

    Hiroshi NISHIMOTO  Yasutaka OGAWA  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:6
      Page(s):
    1474-1486

    MIMO systems using a space division multiplexing (SDM) technique in which each transmit antenna sends an independent signal substream have been studied as one of the successful applications to increase data rates in wireless communications. The throughput of a MIMO channel can be maximized by using an eigenbeam-SDM (E-SDM) technique, and this paper investigates the practical performance of 22 and 44 MIMO E-SDM based on indoor measurements. The channel capacity and bit error rate obtained in various uniform linear array configurations are evaluated and are compared with the corresponding values for conventional SDM. Analysis results show that the bit error rate performance of E-SDM is better than that of SDM and that E-SDM gives better performance in line-of-sight (LOS) conditions than in non-LOS ones. They also show that the performance of E-SDM in LOS conditions depends very much on the array configuration.

  • Node Selection for Belief Propagation Based Channel Equalization

    Mitsuyoshi HAGIWARA  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1285-1292

    Recently, much progress has been made in the study of belief propagation (BP) based signal detection with large-scale factor graphs. When we apply the BP algorithm to equalization in a SISO multipath channel, the corresponding factor graph has many short loops and patterns in an edge connection/strength. Thus, proper convergence may not be achieved. In general, the log-likelihood ratio (LLR) oscillates in ill-converged cases. Therefore, LLR oscillation avoidance is important for BP-based equalization. In this paper, we propose applying node selection (NS) to prevent the LLR from oscillating. The NS extends the loop length virtually by a serial LLR update. Thus, some performance improvement is expected. Simulation results show that the error floor is significantly reduced by NS in the uncoded case and that the NS works very well in the coded case.

  • Arrangement of Scattering Points in Jakes' Model for i.i.d. Time-Varying MIMO Fading

    Hiroshi NISHIMOTO  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    LETTER-Antennas and Propagation

      Vol:
    E90-B No:11
      Page(s):
    3311-3314

    For simulating i.i.d. time-varying MIMO channels using multiple Jakes' rings, it is desirable to generate channels having stable statistics with fewer scatterers. The statistical property of the conventional Jakes' model may depend on the initial phase set assigned to scattering points. In this letter, we present simple and effective conditions on arrangement of scattering points to achieve stable fading properties. The results show that the proposed arrangement provides higher statistical stability in generating time-varying channels.

  • Direction-of-Arrival Estimation of Coherent Signals Using a Cylindrical Array

    Masaki TAKANASHI  Toshihiko NISHIMURA  Yasutaka OGAWA  Takeo OHGANE  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:6
      Page(s):
    2588-2596

    Mainly, a uniform linear array (ULA) has been used for DOA estimation of coherent signals because we can apply the spatial smoothing preprocessing (SSP) technique. However, estimation by a ULA has ambiguity due to the symmetry, and the estimation accuracy depends on the DOA. Although these problems can be solved by using a uniform circular array (UCA), we cannot estimate the DOA of coherent signals because the SSP technique cannot be applied directly to the UCA. In this paper, we propose to estimate 2-dimensional DOA (polar angles and azimuth angles) estimation of coherent signals using a cylindrical array which is composed of stacked UCAs.

  • Behavior of a Multi-User MIMO System in Time-Varying Environments Open Access

    Yasutaka OGAWA  Kanako YAMAGUCHI  Huu Phu BUI  Toshihiko NISHIMURA  Takeo OHGANE  

     
    INVITED PAPER

      Vol:
    E96-B No:10
      Page(s):
    2364-2371

    We evaluated the behavior of a multi-user multiple-input multiple-output (MIMO) system in time-varying channels using measured data. A base station for downlink or broadcast transmission requires downlink channel state information (CSI), which is outdated in time-varying environments and we encounter degraded performance due to interference. One of the countermeasures against time-variant environments is predicting channels with an autoregressive (AR) model-based method. We modified the AR prediction for a time division duplex system. We conducted measurement campaigns in indoor environments to verify the performance of the scheme of channel prediction in an actual environment and measured channel data. We obtained the bit-error rate (BER) using these data. The AR-model-based technique of prediction assuming the Jakes' model was found to reduce BER. Also, the optimum AR-model order was investigated by using the channel data we measured.

  • Channel Extrapolation Techniques for E-SDM System in Time-Varying Fading Environments

    Huu Phu BUI  Yasutaka OGAWA  Takeo OHGANE  Toshihiko NISHIMURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:11
      Page(s):
    3083-3092

    Multiple-input multiple-output (MIMO) systems using eigenbeam space division multiplexing (E-SDM) perform well and have increased capacities compared with those using conventional space division multiplexing (SDM). However, channel state information (CSI) is required at a transmitter, and the performance of E-SDM systems depends much on the accuracy of the CSI at a transmitter and a receiver. In time-varying fading environments, the channel change between the transmit weight determination time and the actual data transmission time causes the system performance to degrade. To compensate for the channel error, a linear extrapolation method has been proposed for a time division duplexing system. Unfortunately, the system performance still deteriorates as the maximum Doppler frequency increases. Here, two new techniques of channel extrapolation are proposed. One is second order extrapolation, and the other is exponential extrapolation. Also, we propose maximum Doppler frequency estimation methods for exponential extrapolation. Simulation results for 4tx 4rx MIMO systems showed that using the proposed techniques, E-SDM system performs better in a higher Doppler frequency region.

  • Soft Decision Directed Channel Estimation with Interference Cancellation for a MIMO System Using Iterative Equalization and Decoding

    Masatsugu HIGASHINAKA  Hiroshi KUBO  Akihiro OKAZAKI  Yasutaka OGAWA  Takeo OHGANE  Toshihiko NISHIMURA  

     
    PAPER-Communication Theory

      Vol:
    E91-A No:10
      Page(s):
    2787-2797

    This paper proposes a novel channel estimation method for iterative equalization in MIMO systems. The proposed method incorporates co-channel interference (CCI) cancellation in the channel estimator and the channel estimation is successively performed with respect to each stream. Accuracy of channel estimation holds the key to be successfully converged the iterative equalization and decoding process. Although the channel estimates can be re-estimated by means of LS (Least Square) channel estimation using tentative decisions obtained in the iterative process, its performance is severely limited in a MIMO system because of erroneous decisions and ill-conditioned channel estimation matrix. The proposed method can suppress the above effects by means of CCI cancellation and successive channel estimation. Computer simulation confirms that the proposed channel estimation method can accurately estimate the channel, and the receiver with iterative equalization and the proposed method achieves excellent decoding performance in a MIMO-SM system.

  • Measurement-Based Performance Evaluation of Coded MIMO-OFDM Spatial Multiplexing with MMSE Spatial Filtering in an Indoor Line-of-Sight Environment

    Hiroshi NISHIMOTO  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1648-1652

    The MIMO system can meet the growing demand for higher capacity in wireless communication fields. So far, the authors have reported that, based on channel measurements, uncoded performance of narrowband MIMO spatial multiplexing in indoor line-of-sight (LOS) environments generally outperforms that in non-LOS (NLOS) ones under the same transmit power condition. In space-frequency coded MIMO-OFDM spatial multiplexing, however, we cannot expect high space-frequency diversity gain in LOS environments because of high fading correlations and low frequency selectivity of channels so that the performance may degrade unlike uncoded cases. In this letter, we present the practical performance of coded MIMO-OFDM spatial multiplexing based on indoor channel measurements. The results show that an LOS environment tends to provide lower space-frequency diversity effect whereas the MIMO-OFDM spatial multiplexing performance is still better in the environment compared with an NLOS environment.

1-20hit(35hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.