1-3hit |
Toshiro NAKAHIRA Tomoki MURAKAMI Hirantha ABEYSEKERA Koichi ISHIHARA Motoharu SASAKI Takatsune MORIYAMA Yasushi TAKATORI
In this paper, we examine techniques for improving the throughput of unlicensed radio systems such as wireless LANs (WLANs) to take advantage of multi-radio access to mobile broadband, which will be important in 5G evolution and beyond. In WLANs, throughput is reduced due to mixed standards and the degraded quality of certain frequency channels, and thus control techniques and an architecture that provide efficient control over WLANs are needed to solve the problem. We have proposed a technique to control the terminal connection dynamically by using the multi-radio of the AP. Furthermore, we have proposed a new control architecture called WiSMA for efficient control of WLANs. Experiments show that the proposed method can solve those problems and improve the WLAN throughput.
Fengning DU Hidekazu MURATA Mampei KASAI Toshiro NAKAHIRA Koichi ISHIHARA Motoharu SASAKI Takatsune MORIYAMA
Distributed detection techniques of multiple-input multiple-output (MIMO) spatially multiplexed signals are studied in this paper. This system considered employs multiple mobile stations (MSs) to receive signals from a base station, and then share their received signal waveforms with collaborating MSs. In order to reduce the amount of traffic over the collaborating wireless links, distributed detection techniques are proposed, in which multiple MSs are in charge of detection by making use of both the shared signal waveforms and its own received waveform. Selection combining schemes of detected bit sequences are studied to finalize the decisions. Residual error coefficients in iterative MIMO equalization and detection are utilized in this selection. The error-ratio performance is elucidated not only by computer simulations, but also by offline processing using experimental signals recorded in a measurement campaign.
Toshiro NAKAHIRA Koichi ISHIHARA Motoharu SASAKI Hirantha ABEYSEKERA Tomoki MURAKAMI Takatsune MORIYAMA Yasushi TAKATORI
In this paper, we propose a novel centralized control method to handle multi-radio and terminal connections in an 802.11ax wireless LAN (802.11ax) mixed environment. The proposed control method can improve the throughput by applying 802.11ax Spatial Reuse in an environment hosting different terminal standards and mixed terminal communication quality. We evaluate the proposed control method by computer simulations assuming environments with mixed terminal standards, mixed communication quality, and both.