Author Search Result

[Author] Van Hung PHAM(2hit)

1-2hit
  • Detection Performance Analysis of Distributed-Processing Multistatic Radar System with Different Multivariate Dependence Models in Local Decisions

    Van Hung PHAM  Tuan Hung NGUYEN  Hisashi MORISHITA  

     
    PAPER-Sensing

      Pubricized:
    2022/03/24
      Vol:
    E105-B No:9
      Page(s):
    1097-1104

    In a previous study, we proposed a new method based on copula theory to evaluate the detection performance of distributed-processing multistatic radar systems, in which the dependence of local decisions was modeled by a Gaussian copula with linear dependence and no tail dependence. However, we also noted that one main limitation of the study was the lack of investigations on the tail-dependence and nonlinear dependence among local detectors' inputs whose densities have long tails and are often used to model clutter and wanted signals in high-resolution radars. In this work, we attempt to overcome this shortcoming by extending the application of the proposed method to several types of multivariate copula-based dependence models to clarify the effects of tail-dependence and different dependence models on the system detection performance in detail. Our careful analysis provides two interesting and important clarifications: first, the detection performance degrades significantly with tail dependence; and second, this degradation mainly originates from the upper tail dependence, while the lower tail and nonlinear dependence unexpectedly improve the system performance.

  • A New Method Based on Copula Theory for Evaluating Detection Performance of Distributed-Processing Multistatic Radar System

    Van Hung PHAM  Tuan Hung NGUYEN  Duc Minh NGUYEN  Hisashi MORISHITA  

     
    PAPER-Sensing

      Pubricized:
    2021/07/13
      Vol:
    E105-B No:1
      Page(s):
    67-75

    In this paper, we propose a new method based on copula theory to evaluate the detection performance of a distributed-processing multistatic radar system (DPMRS). By applying the Gaussian copula to model the dependence of local decisions in a DPMRS as well as data fusion rules of AND, OR, and K/N, the performance of a DPMRS for detecting Swerling fluctuating targets can be easily evaluated even under non-Gaussian clutter with a nonuniform dependence matrix. The reliability and flexibility of this method are validated by applying the proposed method to a previous problem by other authors, and our other investigation results indicate its high potential for evaluating DPMRS performance in various cases involving different models of target and clutter.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.