1-2hit |
Van Hung PHAM Tuan Hung NGUYEN Hisashi MORISHITA
In a previous study, we proposed a new method based on copula theory to evaluate the detection performance of distributed-processing multistatic radar systems, in which the dependence of local decisions was modeled by a Gaussian copula with linear dependence and no tail dependence. However, we also noted that one main limitation of the study was the lack of investigations on the tail-dependence and nonlinear dependence among local detectors' inputs whose densities have long tails and are often used to model clutter and wanted signals in high-resolution radars. In this work, we attempt to overcome this shortcoming by extending the application of the proposed method to several types of multivariate copula-based dependence models to clarify the effects of tail-dependence and different dependence models on the system detection performance in detail. Our careful analysis provides two interesting and important clarifications: first, the detection performance degrades significantly with tail dependence; and second, this degradation mainly originates from the upper tail dependence, while the lower tail and nonlinear dependence unexpectedly improve the system performance.
Van Hung PHAM Tuan Hung NGUYEN Duc Minh NGUYEN Hisashi MORISHITA
In this paper, we propose a new method based on copula theory to evaluate the detection performance of a distributed-processing multistatic radar system (DPMRS). By applying the Gaussian copula to model the dependence of local decisions in a DPMRS as well as data fusion rules of AND, OR, and K/N, the performance of a DPMRS for detecting Swerling fluctuating targets can be easily evaluated even under non-Gaussian clutter with a nonuniform dependence matrix. The reliability and flexibility of this method are validated by applying the proposed method to a previous problem by other authors, and our other investigation results indicate its high potential for evaluating DPMRS performance in various cases involving different models of target and clutter.