1-10hit |
Jaewoon KIM Sekwon KIM Wonjin SUNG Yoan SHIN
We propose a selective detection scheme based on pulse repetition considering both BER (Bit Error Rate) performance and complexity in coherent UWB (Ultra Wide Band) systems. To take system complexity into account, the proposed scheme transmits the UWB signals by pulse repetition at the transmitter, like conventional PRC (Pulse Repetition Coding). However, to effectively improve BER performance of the system, the proposed scheme performs selective detection by estimating the SNR (Signal-to-Noise Ratio) of the received pulse-repeated signal at the UWB receiver.
The circular decoding algorithm for tail-biting convolutional codes is executed using a fixed number of computations and is suitable for DSP/ASIC implementations. This letter presents the performance and complexity trade-off in the circular decoding algorithm using an analytic bound on the error probability. An incremental performance improvement is shown as the complexity increases from O(L) to O(L+10K) where L is the length of the decoding trellis and K is the constraint length. The decoding complexity required to produce the maximum-likelihood performance is presented, which is applicable to many codes of practical interest.
Yong-Chun PIAO Jinwoo CHOE Wonjin SUNG Dong-Joon SHIN
In this letter, we propose combinatorial and search construction methods of 2-D multi-weight optical orthogonal codes (OOCs) with autocorrelation 0 and crosscorrelation 1, called multi-weight single or no pulse per row (MSNPR) codes. An upper bound on the size of MSNPR codes is derived and the performance of MSNPR codes is compared to those of other OOCs in terms of the bit error rate (BER) and evaluated using blocking probability. It is also demonstrated that the MSNPR codes can be flexibly constructed for different applications, providing the scalability to optical CDMA networks.
Jaewon CHANG Gwuieon JIN Wonjin SUNG
Eigen-beamforming (EB) transmission for multiple-input multiple-output (MIMO) systems is an effective means to maximize the receiver signal-to-noise ratio (SNR) in a noise-limited environment, but suffers a performance degradation when strong interference signals exist. In this letter, we propose an interference cancellation method for EB signals by constructing a new receive beamforming vector which jointly utilizes the EB matrix and minimum mean-square error (MMSE) spatial demultiplexing. The proposed method is shown to outperform the conventional EB receiver in the entire cell range, with a significant increase in the effective signal-to-interference plus noise ratio (SINR) near the cell boundary.
In this letter, the effect of distorted constellation shapes of 16-ary modulation due to the power saturation channel is analyzed. In particular, error bounds for 16-QAM and 16-APSK with distorted constellations are derived, and optimal operating points in terms of Es/N0 are presented. The result can be used to accurately predict the performance of these modulation schemes with a given level of the constellation distortion, as well as to determine the amount of input power to the saturation channel which minimizes the probability of modulation symbol error.
Byungseok LEE Ju Wook JANG Sang-Gyu PARK Wonjin SUNG
In this letter, we address a strategy to enhance the signal-to-interference plus noise ratio (SINR) of the worst-case user by using cooperative transmission from a set of geographically separated antennas. Unlike previously reported schemes which are based on either the power control of individual antennas or cooperative orthogonal transmission, the presented strategy utilizes the minimum-mean-squared error (MMSE) filter structure for beamforming, which provides increased robustness to the external interference as well as the background noise at the receiver. By iteratively updating the cooperative transmission beamforming vector and power control (PC), the balanced SINR is obtained for all users, while the transmission power from each antenna also converges to within the constrained value. It is demonstrated that proposed MMSE beamforming significantly outperforms other existing schemes in terms of the achievable minimum SINR.
Jaewon KIM Yoan SHIN Wonjin SUNG
In this letter, we present an exact analytic expression for the maximum signal-to-interference ratio (SIR) for receivers communicating with multiple transmitting nodes over a general time-varying channel, where one of the nodes is chosen as a desired signal source based on the instantaneous channel condition and the other nodes act as interference sources. As an illustrative example, the maximum SIR distribution of a mobile receiver surrounded by three base stations (BS) is determined in a closed-form formula for Rayleigh fading channels, and its accuracy is confirmed using simulation results.
Terrestrial radio links with sparsely distributed multipath delays can be represented by a tapped-delay line with a few significant tap coefficients. This letter presents criteria and performance of identification methods that determine channel taps with significant power. In particular, a tap identification method derived from the maximum-likelihood criterion and its closed form error probabilities are presented. Performance improvement over a previously reported scheme is quantified using the derived error probabilities.
Jonghyun PARK Ju Wook JANG Sang-Gyu PARK Wonjin SUNG
Distributed networks employing collaborative transmission (CT) from remote antennas can provide improved system capacity and cell-edge performance, by using appropriate transmission strategies. When compared to conventional non-collaborative transmission (NCT) from one base station (BS), we show that CT from two adjacent BSs can be beneficial in terms of the capacity, even when the transmission rate is normalized by the number of collaborating BSs. We further demonstrate that performing adaptive transmission (AT) between NCT and CT based on the instantaneous channel conditions provide an additional gain in capacity. The exact amount of achievable gain is quantified by the closed-form formula for the capacity distribution, which is derived using the Jacobian transformation. The presented distribution is immediately applicable to 6-sectored distributed cellular network, for which we present numerical verification of the results.
Jaewoon KIM Sekwon KIM Wonjin SUNG Yoan SHIN
In order to effectively improve the BER (Bit Error Rate) performance of noncoherent IR-UWB (Impulse Radio Ultra Wide Band) systems utilizing 2PPM (Binary Pulse Position Modulation), we propose a selective signal combining scheme which performs selective combination of received signals by estimating the SNR (Signal-to-Noise Ratio) of the energies during the pulse width interval.