1-3hit |
Huafei WANG Xianpeng WANG Xiang LAN Ting SU
Using deep learning (DL) to achieve direction-of-arrival (DOA) estimation is an open and meaningful exploration. Existing DL-based methods achieve DOA estimation by spectrum regression or multi-label classification task. While, both of them face the problem of off-grid errors. In this paper, we proposed a cascaded deep neural network (DNN) framework named as off-grid network (OGNet) to provide accurate DOA estimation in the case of off-grid. The OGNet is composed of an autoencoder consisted by fully connected (FC) layers and a deep convolutional neural network (CNN) with 2-dimensional convolutional layers. In the proposed OGNet, the off-grid error is modeled into labels to achieve off-grid DOA estimation based on its sparsity. As compared to the state-of-the-art grid-based methods, the OGNet shows advantages in terms of precision and resolution. The effectiveness and superiority of the OGNet are demonstrated by extensive simulation experiments in different experimental conditions.
Qi LIU Wei WANG Dong LIANG Xianpeng WANG
In this paper, a real-valued reweighted l1 norm minimization method based on data reconstruction in monostatic multiple-input multiple-output (MIMO) radar is proposed. Exploiting the special structure of the received data, and through the received data reconstruction approach and unitary transformation technique, a one-dimensional real-valued received data matrix can be obtained for recovering the sparse signal. Then a weight matrix based on real-valued MUSIC spectrum is designed for reweighting l1 norm minimization to enhance the sparsity of solution. Finally, the DOA can be estimated by finding the non-zero rows in the recovered matrix. Compared with traditional l1 norm-based minimization methods, the proposed method provides better angle estimation performance. Simulation results are presented to verify the effectiveness and advantage of the proposed method.
Xianpeng WANG Wei WANG Dingjie XU Junxiang WANG
The conventional covariance matrix technique based subspace methods, such as the 2-D Capon algorithm and computationally efficient ESPRIT-type algorithms, are invalid with a single snapshot in a bistatic MIMO radar. A novel matrix pencil method is proposed for the direction of departures (DODs) and direction of arrivals estimation (DOAs) estimation. The proposed method constructs an enhanced matrix from the direct sampled data, and then utilizes the matrix pencil approach to estimate DOAs and DODs, which are paired automatically. The proposed method is able to provide favorable and unambiguous angle estimation performance with a single snapshot. Simulation results are presented to verify the effectiveness of the proposed method.