1-2hit |
Lei WANG Xinrong GUAN Yueming CAI Weiwei YANG Wendong YANG
This work investigates the physical layer security for three cooperative automatic-repeat-request (CARQ) protocols, including the decode-and-forward (DF) CARQ, opportunistic DF (ODF) CARQ, and the distributed space-time code (DSTC) CARQ. Assuming that there is no instantaneous channel state information (CSI) of legitimate users' channel and eavesdropper's channel at the transmitter, the connection outage performance and secrecy outage performance are derived to evaluate the reliability and security of each CARQ protocol. Then, we redefine the concept of the secrecy throughput to evaluate the overall efficiency of the system in terms of maintaining both reliable and secure transmission. Furthermore, through an asymptotic analysis in the high signal-to-noise ratio (SNR) regime, the direct relationship between reliability and security is established via the reliability-security tradeoff (RST). Numerical results verify the analysis and show the efficiency of the CARQ protocols in terms of the improvement on the secrecy throughput. More interestingly, increasing the transmit SNR and the maximum number of transmissions of the ARQ protocols may not achieve a security performance gain. In addition, the RST results underline the importance of determining how to balance the reliability vs. security, and show the superiority of ODF CARQ in terms of RST.
Yida WANG Xinrong GUAN Weiwei YANG Yueming CAI
By exploiting the reciprocity and randomness properties of wireless channels, physical-layer-based key generation provides a stable secrecy channel even when the main channel suffers from a bad condition. Even though the channel variation due to the mobility of nodes in wireless channels provides an improvement of key generation rate (KGR), it decreases the key consistency probability (KCP) between the node pairs. Inspired by the received signal strength(RSS)-angle of arrival(AoA)-based geolocation research, in this work, we analyze the performance of the key extraction using the RSS and AoA. We aim to identify a way to utilize the high KGR of the AoA-based method to overcome the major drawback of having a low KGR in the most common RSS-based scheme. Specifically, we derive the KCP and KGR of the RSS-AoA-based key generation scheme. Further, we propose a new performance metric called effective key generation rate (EKGR), to evaluate the designed key generation scheme in practical scenarios. Finally, we provide numerical results to verify the accuracy of the presented theoretical analysis.