Author Search Result

[Author] Xinyu ZHU(2hit)

1-2hit
  • A Robust Tracking with Low-Dimensional Target-Specific Feature Extraction Open Access

    Chengcheng JIANG  Xinyu ZHU  Chao LI  Gengsheng CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/04/19
      Vol:
    E102-D No:7
      Page(s):
    1349-1361

    Pre-trained CNNs on ImageNet have been widely used in object tracking for feature extraction. However, due to the domain mismatch between image classification and object tracking, the submergence of the target-specific features by noise largely decreases the expression ability of the convolutional features, resulting in an inefficient tracking. In this paper, we propose a robust tracking algorithm with low-dimensional target-specific feature extraction. First, a novel cascaded PCA module is proposed to have an explicit extraction of the low-dimensional target-specific features, which makes the new appearance model more effective and efficient. Next, a fast particle filter process is raised to further accelerate the whole tracking pipeline by sharing convolutional computation with a ROI-Align layer. Moreover, a classification-score guided scheme is used to update the appearance model for adapting to target variations while at the same time avoiding the model drift that caused by the object occlusion. Experimental results on OTB100 and Temple Color128 show that, the proposed algorithm has achieved a superior performance among real-time trackers. Besides, our algorithm is competitive with the state-of-the-art trackers in precision while runs at a real-time speed.

  • ASAN: Self-Attending and Semantic Activating Network towards Better Object Detection

    Xinyu ZHU  Jun ZHANG  Gengsheng CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/11/25
      Vol:
    E103-D No:3
      Page(s):
    648-659

    Recent top-performing object detectors usually depend on a two-stage approach, which benefits from its region proposal and refining practice but suffers low detection speed. By contrast, one-stage approaches have the advantage of high efficiency while sacrifice their accuracies to some extent. In this paper, we propose a novel single-shot object detection network which inherits the merits of both. Motivated by the idea of semantic enrichment to the convolutional features within a typical deep detector, we propose two novel modules: 1) by modeling the semantic interactions between channels and the long-range dependencies between spatial positions, the self-attending module generates both channel and position attention, and enhance the original convolutional features in a self-guided manner; 2) leveraging the class-discriminative localization ability of classification-trained CNN, the semantic activating module learns a semantic meaningful convolutional response which augments low-level convolutional features with strong class-specific semantic information. The so called self-attending and semantic activating network (ASAN) achieves better accuracy than two-stage methods and is able to fulfil real-time processing. Comprehensive experiments on PASCAL VOC indicates that ASAN achieves state-of-the-art detection performance with high efficiency.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.