1-4hit |
Yong LEE Kazuyuki NAGATSUMA Kazuhiko HOSOMI Takuma BAN Kazunori SHINODA Koichiro ADACHI Shinji TSUJI Yasunobu MATSUOKA Shigehisa TANAKA Reiko MITA Toshiki SUGAWARA Masahiro AOKI
We fabricated a p-i-n photodiode (PD) with an integrated microlens, and demonstrated its high performance capabilities including high speed (35 GHz), high responsivity (0.8 A/W), and large misalignment tolerance (26 µm), and an error-free 25-Gbit/s 10-km single-mode fiber transmission by using a 100-Gbit/s Ethernet quadplexer receiver module with the PDs.
Hitoshi NAKAMURA Masato SHISHIKURA Shigehisa TANAKA Yasunobu MATSUOKA Tsunao ONO Takao MIYAZAKI Shinji TSUJI
We propose an InGaAlAs waveguide p-i-n photodiode (WG-PD) with a thick symmetric double-core for surface-hybrid integration onto optical platforms, which can be applied to low cost optical modules for access networks. The waveguide structure is designed to efficiently couple to flat-ended single mode fibers while maintaining low-voltage (less than 2 V) operation. Crystal growth conditions and a passivation technique are also investigated for obtaining high responsivity, low dark current and highly reliable operation. Fiber-coupled responsivity as high as 0.95 A/W, at a 1.3-µm wavelength, and vertical coupling tolerance as wide as 2.6 µm are demonstrated for a dispersion-shifted fiber (DSF) coupling at an operating voltage of 2 V. Dark current is as low as 300 pA at 25 and 12 nA at 100. A temperature accelerated aging test is performed to show the feasibility of using the WG-PD in long-term practical applications.
Takashi TAKEMOTO Yasunobu MATSUOKA Hiroki YAMASHITA Takahiro NAKAMURA Yong LEE Hideo ARIMOTO Tatemi IDO
A 50-Gb/s optical transmitter, consisting of a 25-Gb/s-class lens-integrated DFB-LD (with -3-dB bandwidth of 20GHz) and a LD-driver chip based on 0.18-µm SiGe BiCMOS technology for inter and intra-rack transmissions, was developed and tested. The DFB-LD and LD driver chip are flip-chip mounted on an alumina ceramic package. To suppress inter-symbol interference due to a shortage of the DFB-LD bandwidth and signal reflection between the DFB-LD and the package, the LD driver includes a two-tap pre-emphasis circuit and a high-speed termination circuit. Operating at a data rate of 50Gb/s, the optical transmitter enhances LD bandwidth and demonstrated an eye opening with jitter margin of 0.23UI. Power efficiency of the optical transmitter at a data rate of 50Gb/s is 16.2mW/Gb/s.
Daichi KAWAMURA Toshiaki TAKAI Yong LEE Kenji KOGO Koichiro ADACHI Yasunobu MATSUOKA Norio CHUJO Reiko MITA Saori HAMAMURA Satoshi KANEKO Kinya YAMAZAKI Yoshiaki ISHIGAMI Toshiki SUGAWARA Shinji TSUJI
We describe 25-Gb/s error-free transmission over multi-mode fiber (MMF) by using a transmitter based on a 1.3-µm lens-integrated surface-emitting laser (LISEL) and a CMOS laser-diode driver (LDD). It demonstrates 25-Gb/s error-free transmission over 30-m MMF under the overfilled-launch condition and over 150-m MMF with a power penalty less than 1.0 dB under the underfilled-launch condition.