1-7hit |
Yong LEE Kazuyuki NAGATSUMA Kazuhiko HOSOMI Takuma BAN Kazunori SHINODA Koichiro ADACHI Shinji TSUJI Yasunobu MATSUOKA Shigehisa TANAKA Reiko MITA Toshiki SUGAWARA Masahiro AOKI
We fabricated a p-i-n photodiode (PD) with an integrated microlens, and demonstrated its high performance capabilities including high speed (35 GHz), high responsivity (0.8 A/W), and large misalignment tolerance (26 µm), and an error-free 25-Gbit/s 10-km single-mode fiber transmission by using a 100-Gbit/s Ethernet quadplexer receiver module with the PDs.
Shinji TSUJI Ryuta TAKAHASHI Takeshi KATO Fumihiko UCHIDA Satoru KIKUCHI Toshinori HIRATAKA Masato SHISHIKURA Hiroaki OKANO Tsuneo SHIOTA Satoshi AOKI
Precise direct mounting of laser diode (LD) and photodiode (PD) chips on silica planar lightwave circuits (PLCs) has been investigated for application to transceiver modules. To achieve submicron optical alignment, self-aligned index marks on the PLCs and LDs were directly detected by transmission infrared light. The repeatability of the positioning was measured to be within 0.125 µm. The output power of the resultant module was 0.2 mW at 80 mA. A waveguide-type PD was also mounted in the same way, and module sensitivity of 0.25 A/W was demonstrated.
Hitoshi NAKAMURA Masato SHISHIKURA Shigehisa TANAKA Yasunobu MATSUOKA Tsunao ONO Takao MIYAZAKI Shinji TSUJI
We propose an InGaAlAs waveguide p-i-n photodiode (WG-PD) with a thick symmetric double-core for surface-hybrid integration onto optical platforms, which can be applied to low cost optical modules for access networks. The waveguide structure is designed to efficiently couple to flat-ended single mode fibers while maintaining low-voltage (less than 2 V) operation. Crystal growth conditions and a passivation technique are also investigated for obtaining high responsivity, low dark current and highly reliable operation. Fiber-coupled responsivity as high as 0.95 A/W, at a 1.3-µm wavelength, and vertical coupling tolerance as wide as 2.6 µm are demonstrated for a dispersion-shifted fiber (DSF) coupling at an operating voltage of 2 V. Dark current is as low as 300 pA at 25 and 12 nA at 100. A temperature accelerated aging test is performed to show the feasibility of using the WG-PD in long-term practical applications.
Takanori SUZUKI Hideo ARIMOTO Takeshi KITATANI Aki TAKEI Takafumi TANIGUCHI Kazunori SHINODA Shigehisa TANAKA Shinji TSUJI Tatemi IDO Jun IGRASHI Atsushi NAKAMURA Kazuhiko NAOE Kenji UCHIDA
A dual-core spot size converter (DC-SSC) is integrated with a lateral grating assisted lateral co-directional coupler (LGLC) tunable laser by using no additional complicated fabrication processes. The excess loss due to the DC-SSC is only 0.5 dB, and narrow full width half maximums (FWHMs) of vertical and horizontal far-field patterns (FFPs) produced by the laser are about 25° and 20°. This integration causes no degradations of the performance of the LGLC laser; in other words, it maintains good lasing characteristics, namely, wide tuning range of over 68 nm and SMSR of over 35 dB in the C-band under a 50 semi-cooled condition.
Hiroaki OKANO Hideo OTSUKI Hisato UETSUKA Tatsuo TERAOKA Tsuneo SHIOTA Satoshi AOKI Shinji TSUJI
To realize a low-cost WDM transceiver module based on a PLC-platform, simple, assembly techniques have been successfully developed. The formation of index marks with an accuracy of below 0.1 µm has made it possible to mount Opto-electronic devices on the silicon terrace of the PLC-platform by a passive alignment. A newly developed trench formation technique for inserting a 1.3/1.5 µm WDM dielectric filter enabled us not only to ensure a stable WDM function but also to prevent excess loss associated with the dielectric filter scheme. It is found that these two technologies are practically useful to achieve high-performance WDM transceiver module.
Makoto TAKAHASHI Tsukuru OHTOSHI Masahiro AOKI Hiroshi SATO Shinji TSUJI Kazuhisa UOMI Ken NAONO
Waveguide characteristics of beam-expanders integrated with laser diodes were numerically analyzed by the beam propagation method (BPM) or the finite-difference time-domain (FD-TD) method. It was demonstrated that the vertically and horizontally hybrid tapered structure or an optimized refractive index in the cladding layer improve the trade-off relationship between fiber coupling efficiency and lasing characteristics. It was also demonstrated that exponentially tapering stripe width can reduce device length without sacrificing device properties.
Daichi KAWAMURA Toshiaki TAKAI Yong LEE Kenji KOGO Koichiro ADACHI Yasunobu MATSUOKA Norio CHUJO Reiko MITA Saori HAMAMURA Satoshi KANEKO Kinya YAMAZAKI Yoshiaki ISHIGAMI Toshiki SUGAWARA Shinji TSUJI
We describe 25-Gb/s error-free transmission over multi-mode fiber (MMF) by using a transmitter based on a 1.3-µm lens-integrated surface-emitting laser (LISEL) and a CMOS laser-diode driver (LDD). It demonstrates 25-Gb/s error-free transmission over 30-m MMF under the overfilled-launch condition and over 150-m MMF with a power penalty less than 1.0 dB under the underfilled-launch condition.