1-5hit |
Hirosaka IKEDA Tetsuya ITO Shigeru SAWADA Yasuhiro HATTORI Yasushi SAITOH Terutaka TAMAI Kazuo IIDA
Due to the recent increase in electronic devices mounted on automobiles, a large number of connectors, especially low-cost tin plated connectors are being used. As a result, their contact reliability has become problematic. Furthermore, for the connectors which are subjected to fretting wear caused by heat cycle and vibrations, the contact resistance increases because of wear of tin and deposition of oxides, which generates problems of poor contact. This study is intended to analyze the change in contact resistance of tin plated connectors from the start of fretting wear to the end of their lifetime from the viewpoint of practical reliability, and to observe the trace and the characteristics of fretting wear microscopically. This study found that wear and oxidation of tin plated connectors start immediately with fretting wear, and thus accumulation of abrasion powder on fretting areas causes connectors to reach to the end of their useful lifetime quickly. Especially, it was demonstrated that amplitude of fretting has a considerable influence on a connector's lifetime. It is made clear that air-tightness, so-called "gas-tight" of tin in a fretting area influences fretting wear considerably.
Shigeru SAWADA Song-Zhu KURE-CHU Rie NAKAGAWA Toru OGASAWARA Hitoshi YASHIRO Yasushi SAITOH
This study is aimed at clarifying the mechanism of wear process for Ag plating. The samples of different hardness Ag plating on copper alloys were prepared as coupon and embossment specimens, which simulated terminal contacts. During the sliding test, the contact resistance and the friction coefficient versus sliding distance are measured. The surface observation and surface roughness of the Ag films after wear tests were investigated. As results, the hard Ag plating film (120 Hv) exhibited higher contact resistance comparing to the soft Ag plating film (80 Hv). The soft Ag film delivered wider wear trace on coupon specimens compared to the hard one. Moreover, the observation of tribofilms formed on the Ag films after wear tests suggested that a mixed-type of adhesive and abrasive wears occurred for both of soft and hard Ag films. Furthermore, the fretting corrosion resistance of Ag plating samples with different hardness was also investigated. As results, the wear resistance of hard Ag film was stronger than that of soft Ag film.
Tetsuya ITO Shigeru SAWADA Yasuhiro HATTORI Yasushi SAITOH Terutaka TAMAI Kazuo IIDA
In recent years, there has been increasing demand to miniaturize wiring harness connectors in automobiles due to the increasing volume of electronic equipment and the reduction of the installation space allocated for the electronic equipment in automobiles for the comfort of the passengers. With this demand, contact failure caused by the fretting corrosion is expected to become a serious problem. In this report, we examined micro-structural observations of fretting contacts of two different tin plating thicknesses using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) and so on. Based on the results, we compared the microstructure difference of fretting contact caused by the difference of the tin plating thickness.
Yoshiyuki NOMURA Yasushi SAITOH Kingo FURUKAWA Yoshinori MINAMI Kanji HORIUCHI Yasuhiro HATTORI
A press-fit connection is a solderless electrical connection technology, which utilizes the mechanical contact force generated between through-holes on a printed circuit board (PCB) and terminals with a width slightly larger than the through-hole diameter. This technology has been widely noted recently as a measure against the "Lead Free Requirement" of materials comprising electric/electronic devices, especially in the area of automobile connector. For the application of this technology to automobile connectors, we have to take into account the severe requirement, such as (1) the adaptation to wider through-hole diameter tolerance range and (2) the establishment of connection reliability for the various PCB surface treatments. As a result, we have determined the minimum and maximum contact forces satisfying the long term connection reliability and designed the terminal shape, which has been refined the N-shape cross section developed before, by using three dimensional finite element methods (FEM). Furthermore, we have developed a new type of hard tin plating on terminals, thus preventing the scraping-off of tin during the insertion process, that could result in a short-circuit on the PCB, for the Organic Solderability Preservative (OSP) treated PCB. The press-fit connector for the automobile airbag Electronic Control Units (ECUs) we developed has been able to transfer to the mass-production phase successfully from August 2005.
Terutaka TAMAI Yasushi SAITOH Yasuhiro HATTORI Hirosaka IKEDA
Characteristics of conductive elastomer that is composed of silicone rubber and dispersed carbon black particles show conductive and elastic properties in one simple material. This material has been widely applied to make-break contacts of panel switches and connectors of liquid crystal panels. However, since surface state of the contact is very soft, it is difficult to remove contaminant films of contaminated opposite side contact surface and to obtain low contact resistance owing to break the film. This is an important problem to be solved not only for the application of make-break switching contact but also static connector contacts. This study has been conducted to examine some complex structures of the elastomer which indicate removal characteristics for contaminant films and low contact resistance. As specimens, six different types of elastomer contacts composed of different type of dispersed materials as carbon and metal fibers, metal mesh, and plated surfaces were used. The contacts of opposite side were Au and Sn plated contact surface on a printed circuit board (PCB) which is usually used in the static connector and make-break contacts. In order to contaminate contact surfaces of PCB, the surfaces were subjected to exposure in an SO2 gas environment. The elastomeric contacts contained hard materials showed lower contact resistance than only dispersed carbon particles in the elastomer matrix for both contaminated PCB contact surfaces.