1-5hit |
Osamu NISHII Yoichi YUYAMA Masayuki ITO Yoshikazu KIYOSHIGE Yusuke NITTA Makoto ISHIKAWA Tetsuya YAMADA Junichi MIYAKOSHI Yasutaka WADA Keiji KIMURA Hironori KASAHARA Hideo MAEJIMA
We built a 12.4 mm12.4 mm, 45-nm CMOS, chip that integrates eight 648-MHz general purpose cores, two matrix processor (MX-2) cores, four flexible engine (FE) cores and media IP (VPU5) to establish heterogeneous multi-core chip architecture. The general purpose core had its IPC (instructions per cycle) performance enhanced by adding 32-bit instructions to the existing 16-bit fixed-length instruction set and executing up to two 32-bit instructions per cycle. Considering these five-to-seven years of embedded LSI and increasing trend of access-master within LSI, we predict that the memory usage of single core will not exceed 32-bit physical area (i.e. 4 GB), but chip-total memory usage will exceed 4 GB. Based on this prediction, the physical address was expanded from 32-bit to 40-bit. The fabricated chip was tested and a parallel operation of eight general purpose cores and four FE cores and eight data transfer units (DTU) is obtained on AAC (Advanced Audio Coding) encode processing.
Yuan HE Yasutaka WADA Wenchao LUO Ryuichi SAKAMOTO Guanqin PAN Thang CAO Masaaki KONDO
Due to the slowdown of Moore's Law, power limitation has been one of the most critical issues for current and future HPC systems. To more efficiently utilize HPC systems when power budgets or deadlines are given, it is very desirable to accurately estimate the performance or power consumption of applications before conducting their tuned production runs on any specific systems. In order to ease such estimations, we showcase a straight-forward and yet effective method, based on the enhanced power management framework and DSL we developed, to help HPC users to clarify the performance and power relationships of their applications. This method demonstrates an easy process of profiling, modeling and management on both performance and power of HPC systems and applications. In our evaluations, only a few (up to 3) profiled runs are necessary before very precise models of HPC applications can be obtained through this method (and algorithm), which has dramatically improved the efficiency of and lowered the difficulty in utilizing HPC systems under limited power budgets.
Hiroaki SHIKANO Jun SHIRAKO Yasutaka WADA Keiji KIMURA Hironori KASAHARA
A power-aware compiler controllable chip multiprocessor (CMP) is presented and its performance and power consumption are evaluated with the optimally scheduled advanced multiprocessor (OSCAR) parallelizing compiler. The CMP is equipped with power control registers that change clock frequency and power supply voltage to functional units including processor cores, memories, and an interconnection network. The OSCAR compiler carries out coarse-grain task parallelization of programs and reduces power consumption using architectural power control support and the compiler's power saving scheme. The performance evaluation shows that MPEG-2 encoding on the proposed CMP with four CPUs results in 82.6% power reduction in real-time execution mode with a deadline constraint on its sequential execution time. Furthermore, MP3 encoding on a heterogeneous CMP with four CPUs and four accelerators results in 53.9% power reduction at 21.1-fold speed-up in performance against its sequential execution in the fastest execution mode.