1-6hit |
Makoto ISHIKAWA Tatsuya KAMEI Yuki KONDO Masanao YAMAOKA Yasuhisa SHIMAZAKI Motokazu OZAWA Saneaki TAMAKI Mikio FURUYAMA Tadashi HOSHI Fumio ARAKAWA Osamu NISHII Kenji HIROSE Shinichi YOSHIOKA Toshihiro HATTORI
We have developed an application processor optimized for 3G cellular phones. It provides high energy efficiency by using various low power techniques. For low active power consumption, we use a hierarchical clock gating technique with a static clock gating controlled by software and a two-level dynamic clock gating controlled by hardware. This technique reduces clock power consumption by 35%. And we also apply a pointer-based pipeline to in the CPU core, which reduces the pipeline latch power by 25%. This processor contains 256 kB of on-chip user RAM (URAM) to reduce the external memory access power. The URAM read buffer (URB) enables high-throughput, low latency access to the URAM while keeping the CPU clock frequency high because the URAM read data is transferred to the URB in 256-bit widths at half the frequency of the CPU. The average miss penalty is 3.5 cycles at the CPU clock frequency, hit rate is 89% and the energy used for URAM reads is 8% less that what it would be for URAM without a URB. These techniques reduce the power consumption of the CPU core, and achieve 4500 MIPS/W at 1.0 V power supply (Dhrystone 2.1). For the low leakage requirements, we use internal power switches, and provides resume-standby (R-standby) and ultra-standby (U-standby) modes. Signals across a power boundary are transmitted through µI/O circuits to prevent invalid signal transmission. In the R-standby mode, the power supply to almost all the CPU core area, except for the URAM is cut off and the URAM is set to a retention mode. In the U-standby mode, the power supply to the URAM is also turned off for less leakage current. The leakage currents in the R-standby and in the U-standby modes are respectively only 98 and 12 µA. For quick recovery from the R-standby mode, the boot address register (BAR) and control register contents needed immediately after wake-up are saved by hardware into backup latches. The other contents are saved by software into URAM. It takes 2.8 ms to fully recover from R-standby.
Fumio ARAKAWA Motokazu OZAWA Osamu NISHII Toshihiro HATTORI Takeshi YOSHINAGA Tomoichi HAYASHI Yoshikazu KIYOSHIGE Takashi OKADA Masakazu NISHIBORI Tomoyuki KODAMA Tatsuya KAMEI Makoto ISHIKAWA
A SuperHTM embedded processor core implemented in a 130-nm CMOS process running at 400 MHz achieved 720 MIPS and 2.8 GFLOPS at a power of 250 mW in worst-case conditions. It has a dual-issue seven-stage pipeline architecture but maintains the 1.8 MIPS/MHz of the previous five-stage processor. The processor meets the requirements of a wide range of applications, and is suitable for digital appliances aimed at the consumer market, such as cellular phones, digital still/video cameras, and car navigation systems.
Toru SHIMIZU Kazutami ARIMOTO Osamu NISHII Sugako OTANI Hiroyuki KONDO
Various low power technologies have been developed and applied to LSIs from the point of device and circuit design. A lot more CPU cores as well as function IPs are integrated on a single chip LSI today. Therefore, not only the device and circuit low power technologies, but software power control technologies are becoming more important to reduce active power of application systems. This paper overviews the low power technologies and defines power management platform as a combination of hardware functions and software programming interface. This paper discusses importance of the power management platform and direction of its development.
Alberto Palacios PAWLOVSKY Makoto HANAWA Osamu NISHII Tadahiko NISHIMUKAI
Advances in semiconductor technology have made it possible to develop an experimental 1000 MIPS superscalar RISC processor. The high performance of this processor was obtained using architectural concepts such as multiple CPU configuration, superscalar microarchitecture, and high-speed device technology. This paper focuses on the novel features of this RISC processor, its device technology, architectural characteristics and one technology that has been devised to make its integer CPU cores fault-tolerant.
Osamu NISHII Yoichi YUYAMA Masayuki ITO Yoshikazu KIYOSHIGE Yusuke NITTA Makoto ISHIKAWA Tetsuya YAMADA Junichi MIYAKOSHI Yasutaka WADA Keiji KIMURA Hironori KASAHARA Hideo MAEJIMA
We built a 12.4 mm12.4 mm, 45-nm CMOS, chip that integrates eight 648-MHz general purpose cores, two matrix processor (MX-2) cores, four flexible engine (FE) cores and media IP (VPU5) to establish heterogeneous multi-core chip architecture. The general purpose core had its IPC (instructions per cycle) performance enhanced by adding 32-bit instructions to the existing 16-bit fixed-length instruction set and executing up to two 32-bit instructions per cycle. Considering these five-to-seven years of embedded LSI and increasing trend of access-master within LSI, we predict that the memory usage of single core will not exceed 32-bit physical area (i.e. 4 GB), but chip-total memory usage will exceed 4 GB. Based on this prediction, the physical address was expanded from 32-bit to 40-bit. The fabricated chip was tested and a parallel operation of eight general purpose cores and four FE cores and eight data transfer units (DTU) is obtained on AAC (Advanced Audio Coding) encode processing.
Tetsuya YAMADA Masahide ABE Yusuke NITTA Kenji OGURA Manabu KUSAOKE Makoto ISHIKAWA Motokazu OZAWA Kiwamu TAKADA Fumio ARAKAWA Osamu NISHII Toshihiro HATTORI
A low-power SuperHTM embedded processor core, the SH-X2, has been designed in 90-nm CMOS technology. The power consumption was reduced by using hierarchical fine-grained clock gating to reduce the power consumption of the flip-flops and the clock-tree, synthesis and a layout that supports the implementation of the clock gating, and several-level power evaluations for RTL refinement. With this clock gating and RTL refinement, the power consumption of the clock-tree and flip-flops was reduced by 35% and 59%, including the process shrinking effects, respectively. As a result, the SH-X2 achieved 6,000 MIPS/W using a Renesas low-power process with a lowered voltage. Its performance-power efficiency was 25% better than that of a 130-nm-process SH-X.