1-5hit |
Yoshihide KOMATSU Yukio ARIMA Koichiro ISHIBASHI
This paper describes a soft error hardened latch (SEH-Latch) scheme that has an error correction function in the fine process. The storage node of the latch is separated into three electrodes and a soft error on one node is collected by the other two nodes despite the large amount and long-lasting influx of radiation-induced charges. To achieve this, we designed two types of SEH-Latch circuits and a standard latch circuit using 130-nm 2-well, 3-well, and also 90-nm 2-well CMOS processes. The proposed circuit demonstrated immunity that was two orders higher through an irradiation test using alpha-particles, and immunity that was one order higher through neutron irradiation. We also demonstrated forward body bias control, which improves alpha-ray immunity by 26% for a standard latch and achieves 44 times improvement in the proposed latch.
Takefumi YOSHIKAWA Yoshihide KOMATSU Tsuyoshi EBUCHI Takashi HIRATA
A transceiver macro for high-speed data transmission via cable in vehicles is proposed. The transceiver uses ac coupling and bi-directional interface topology for protecting LSIs against unexpected short of cable and harness/chassis and has a spread-spectrum-clocking (SSC) generator that reduces noise due to electromagnetic interference. A driver current control has been used for fast switching of data direction on ac-coupled interfaces. An adaptive bandwidth control has been used in a Δ ∑ PLL to improve SCC significantly. A test chip has been fabricated and shows stable and bi-directional data communication with data rate of 162 to 972 Mbps through 20-m cable. Thanks to an optimum calibration of the SSC-PLL bandwidth, it reduces peak power at 33 kHz by -23 dB and provides 2% modulation at a data rate of 810 Mbps.
Yoshihide KOMATSU Akinori SHINMYO Mayuko FUJITA Tsuyoshi HIRAKI Kouichi FUKUDA Noriyuki MIURA Makoto NAGATA
With increasing technology scaling and the use of lower voltages, more research interest is being shown in variability-tolerant analog front end design. In this paper, we describe an adaptive amplitude control transmitter that is operated using differential signaling to reduce the temperature variability effect. It enables low power, low voltage operation by synergy between adaptive amplitude control and Vth temperature variation control. It is suitable for high-speed interface applications, particularly cable interfaces. By installing an aggressor circuit to estimate transmitter jitter and changing its frequency and activation rate, we were able to analyze the effects of the interface block on the input buffer and thence on the entire system. We also report a detailed estimation of the receiver clock-data recovery (CDR) operation for transmitter jitter estimation. These investigations provide suggestions for widening the eye opening of the transmitter.
Koichiro ISHIBASHI Tetsuya FUJIMOTO Takahiro YAMASHITA Hiroyuki OKADA Yukio ARIMA Yasuyuki HASHIMOTO Kohji SAKATA Isao MINEMATSU Yasuo ITOH Haruki TODA Motoi ICHIHASHI Yoshihide KOMATSU Masato HAGIWARA Toshiro TSUKADA
Circuit techniques for realizing low-voltage and low-power SoCs for 90-nm CMOS technology and beyond are described. A proposed SAFBB (self-adjusted forward body bias techniques), ATC (Asymmetric Three transistor Cell) DRAM, and ADC using an offset canceling comparator deal with leakage and variability issues for these technologies. A 32-bit adder using SAFBB attained 353-µA at 400-MHz operation at 0.5-V supply voltage, and 1 Mb memory array using ATC DRAM cells achieved 1.5 mA at 50 MHz, 0.5 V. The 4-bit ADC attained 2 Gsample/s operation at a supply voltage of 0.9 V.
Yoshihide KOMATSU Koichiro ISHIBASHI Makoto NAGATA
This paper describes a method of reducing substrate noise and random variability utilizing a self-adjusted forward body bias (SA-FBB) circuit. To achieve this, we designed a test chip (130 nm CMOS 3-well) that contained an on-chip oscilloscope for detecting dynamic noise from various frequency noise sources, and another test chip (90 nm CMOS 2-well) that contained 10-M transistors for measuring random variability tendencies. Under SA-FBB conditions, it reduced noise by 35.3-69.8% and reduced random variability σ (Ids) by 23.2-57.9%.