1-3hit |
This paper presents a wide tuning range VCO with an automatic frequency, gain, and two-step amplitude calibration loop for Digital TV (DTV) tuner applications. To cover the wide tuning range, the fully digital automatic frequency calibration (AFC) loop is used. In addition to the AFC loop, a two-step negative-Gm tuning loop is proposed to provide the optimum negative-Gm to the LC tank in a wide frequency range with a fine resolution. In the coarse negative-Gm tuning loop, the number of active negative-Gm cells is selected digitally based on the target frequency. In the fine negative-Gm tuning loop, the negative-Gm is tuned finely with the bias voltage of the VCO. Also, the digital VCO gain calibration scheme is proposed to compensate for the gain variation in a wide tuning range. The VCO tuning range is 2.6 GHz, from 1.7 GHz to 4.3 GHz, and the power consumption is 2 mA to 4 mA from a 1.8 V supply. The measured VCO phase noise is -120 dBc/Hz at 1 MHz offset.
This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25 dB to the desired level within 10 µs. It is implemented in a 0.18 µm CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8nV/ input referred noise, and 5-dBm IIP3 at 60-mW power consumption. The power detector shows the 35 dB dynamic range for 100 MHz input.
YoungHwa KIM AnSoo PARK Joon-Sung PARK YoungGun PU Hyung-Gu PARK HongJin KIM Kang-Yoon LEE
In this paper, we propose a two-step TDC with phase-interpolator and time amplifier to satisfy high resolution at 2.4 GHz input frequency by implementing delay time less than that of an inverter delay. The accuracy of phase-interpolator is improved for process variation using the resistor automatic-tuning circuit. The gain of time amplifier is improved using the delay time difference between two delay cells. It is implemented in a 0.13 µm CMOS process with a die area of 0.68 mm2. And the power consumption is 14.4 mW at a 1.2 V supply voltage. The resolution and input frequency of the TDC are 0.357 ps and 2.4 GHz, respectively.