1-2hit |
Yukio KATOH Koji YAMADA Tatsuo KUNII Yoh OGAWA
A wavelength tunable DBR laser monolithically integrated with an EA-modulator as a WDM system light source was fabricated by selective area MOVPE growth. The lasing wavelength and band-gap energy were simultaneously controlled on the same epitaxial wafer by using a modulated grown thickness of InGaAsP/InGaAsP MQW layers. A wavelength tuning range of 3.5 nm, an output power of 3 mW, and an extinction ratio of 14 dB for 3 V were achieved. The measured 3 dB frequency bandwidth was 2 GHz. No significant change in modulation characteristics were observed when wavelength tuning by injecting the current into the DBR.
Shin ARAHIRA Yukio KATOH Daisuke KUNIMATSU Yoh OGAWA
A 160 GHz colliding-pulse mode-locked laser diode (CPM-LD) was stabilized by injection of a stable master laser pulse train repeated at a 16th-subharmonic-frequency (9.873 GHz) of the CPM-LD's mode-locking frequency. Synchroscan steak camera measurements revealed a clear pulse train with 16-times repetition frequency of the master laser pulse train for the stabilized CPM-LD output, indicating that CPM-LD output was synchronized to the master laser and that the timing jitter was also reduced. The timing jitter of the stabilized CPM-LD was quantitatively evaluated by an all-optical down converting technique using the nonlinearity of optical fiber. This technique is simple and has a wider bandwidth in comparison to a conventional technique, making it possible to accurately measure the phase noise of ultrafast optical pulse train when its repetition frequency exceeds 100 GHz. The electrical power spectra measurements indicated that the CPM-LD's mode-locking frequency was exactly locked by the injection of the master laser pulse train and that the timing jitter decreased as the injection power increased. The timing jitter was reduced from 2.2 ps in free running operation to 0.26 ps at an injection power of 57 mW, comparable to that of the master laser (0.21 ps).