Author Search Result

[Author] Yun CAO(4hit)

1-4hit
  • Quality-Driven Design for Video Applications

    Yun CAO  Hiroto YASUURA  

     
    PAPER-Design Methodology

      Vol:
    E85-A No:12
      Page(s):
    2568-2576

    This paper presents a novel system-level design methodology, called quality-driven design, by which application-specific optimization can be achieved; furthermore the entire functionality can be shared to maximize design reuse. As a case of study, this paper focuses on quality-driven design for video applications and introduces an output quality adaptive approach based on variable bitwidth optimization to explore a new design space. MPEG2 video is used as the driver application to illustrate the potential of the presented methodology. Experimental results show the effectiveness of the methodology.

  • Memory Organization for Low-Energy Processor-Based Application-Specific Systems

    Yun CAO  Hiroto YASUURA  

     
    PAPER-Optoelectronics

      Vol:
    E85-C No:8
      Page(s):
    1616-1624

    This paper presents a novel low-energy memory design technique based on variable analysis for on-chip data memory (RAM) in application-specific systems, which called VAbM technique. It targets the exploitation of both data locality and effective data width of variables to reduce energy consumed by data transfer and storage. Variables with higher access frequency and smaller effective data width are assigned into a smaller low-energy memory with fewer bit lines and word lines, placed closer the processor. Under constraints of the number of memory banks, VAbM technique use variable analysis results to perform allocating and assigning on-chip RAM into multiple banks, which have different size with different number of word lines and different number of bit lines tailored to each application requirements. Experimental results with several real embedded applications demonstrate significant energy reduction up to 64.8% over monolithic memory, and 27.7% compared to memory designed by memory banking technique.

  • Power Analysis and Estimation for SOC Design: Techniques and Tools

    Yun CAO  Hiroto YASUURA  

     
    REVIEW PAPER-VLSI Design Technology and CAD

      Vol:
    E87-A No:2
      Page(s):
    410-416

    As power consumption becoming a critical concern for System-On-a-Chip (SOC) design, accurate and efficient power analysis and estimation during the design phase at all levels of abstraction are becoming increasingly pressing in order to achieve low power without a costly redesign process. This paper surveys analysis and estimation techniques of dynamic power and leakage power for SOC design covering multiple design levels, which have been recently proposed, aiming to present a cohesive view of the power estimation techniques at all design levels of abstraction.

  • Leakage Power Reduction for Battery-Operated Portable Systems

    Yun CAO  Hiroto YASUURA  

     
    LETTER-Power Optimization

      Vol:
    E86-A No:12
      Page(s):
    3200-3203

    This paper addresses bitwidth optimization focusing on leakage power reduction for system-level low-power design. By means of tuning the design parameter, bitwidth tailored to a given application requirements, the datapath width of processors and size of memories are optimized resulting in significant leakage power reduction besides dynamic power reduction. Experimental results for several real embedded applications, show power reduction without performance penalty range from about 21.5% to 66.2% of leakage power, and 14.5% to 59.2% of dynamic power.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.