1-2hit |
Young-Sang KIM Yunjae SUH Hong-June PARK Jae-Yoon SIM
Two phase detectors (PD) are proposed to minimize the phase offset and deadzone when used in DLL or PLL. With the shortest symmetrical racing paths from both inputs, the binary PD achieves fast latch operation and theoretical elimination of the setup time. In contrast to the conventional PDs whose offsets are around 10 ps with large sensitivity to sizing, the proposed binary PD shows an offset of less than 1 ps with a reduction of 30-percent delay time. The proposed latch-type binary phase detection is also expanded to form a linear PD by the addition of a reset-generating circuit.
Young-Sang KIM Yunjae SUH Hong-June PARK Jae-Yoon SIM
This paper presents a quantitative analysis and design methodology of resistor-based phase error averaging scheme for precise multiphase generation. Unlike the previously reported works stating that more averaging simply achieves better linearity, the proposed analysis leads to the existence of the optimum number of averaging contributions by including the effect of the signal transition time. The developed model shows a good agreement with a Monte-Carlo circuit simulation. A test PLL with a 32-phase two-dimensional ring VCO, implemented in a 0.18 µm CMOS, generates monotonous 32 phases with the best linearity performance, showing an INL of +0.27/-1.0 LSB and a DNL of +0.37/-0.27 LSB at 1.2 GHz, and an INL of +0.23/-1.57 LSB and a DNL of +0.44/-0.44 LSB at 1.6 GHz.